Abstract Transition disks, with inner regions depleted in dust and gas, could represent later stages of protoplanetary disk evolution when newly formed planets are emerging. The PDS 70 system has attracted particular interest because of the presence of two giant planets in orbits at tens of astronomical units within the inner disk cavity, at least one of which is itself accreting. However, the region around PDS 70 most relevant to understanding the planet populations revealed by exoplanet surveys of middle-aged stars is the inner disk, which is the dominant source of the system’s excess infrared emission but only marginally resolved by the Atacama Large Millimeter/submillimeter Array. Here we present and analyze time-series optical and infrared photometry and spectroscopy that reveal the inner disk to be dynamic on timescales of days to years, with occultation by submicron dust dimming the star at optical wavelengths, and 3–5μm emission varying due to changes in disk structure. Remarkably, the infrared emission from the innermost region (nearly) disappears for ∼1 yr. We model the spectral energy distribution of the system and its time variation with a flattened warm (T≲ 600 K) disk and a hotter (1200 K) dust that could represent an inner rim or wall. The high dust-to-gas ratio of the inner disk, relative to material accreting from the outer disk, means that the former could be a chimera consisting of depleted disk gas that is subsequently enriched with dust and volatiles produced by collisions and evaporation of planetesimals in the inner zone. 
                        more » 
                        « less   
                    
                            
                            RZ Piscium Hosts a Compact and Highly Perturbed Debris Disk
                        
                    
    
            Abstract RZ Piscium (RZ Psc) is well known in the variable star field because of its numerous irregular optical dips in the past 5 decades, but the nature of the system is heavily debated in the literature. We present multiyear infrared monitoring data from Spitzer and WISE to track the activities of the inner debris production, revealing stochastic infrared variability as short as weekly timescales that is consistent with destroying a 90 km sized asteroid every year. ALMA 1.3 mm data combined with spectral energy distribution modeling show that the disk is compact (∼0.1–13 au radially) and lacks cold gas. The disk is found to be highly inclined and has a significant vertical scale height. These observations confirm that RZ Psc hosts a close to edge-on, highly perturbed debris disk possibly due to migration of recently formed giant planets that might be triggered by the low-mass companion RZ Psc B if the planets formed well beyond the snowlines. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2307920
- PAR ID:
- 10509350
- Publisher / Repository:
- The Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 959
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 43
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Shu-ichiro Inutsuka; Yuri Aikawa; Takayuki Muto; Kengo Tomida; Motohide Tamura (Ed.)Since Protostars and Planets VI (PPVI), our knowledge of the global properties of protoplanetary and debris disks, as well as of young stars, has dramatically improved. At the time of PPVI, mm-observations and optical to near-infrared spectroscopic surveys were largely limited to the Taurus star-forming region, especially of its most massive disk and stellar population. Now, near-complete surveys of multiple star-forming regions cover both spectroscopy of young stars and mm interferometry of their protoplanetary disks. This provides an unprecedented statistical sample of stellar masses and mass accretion rates, as well as disk masses and radii, for almost 1000 young stellar objects within 300 pc from us, while also sampling different evolutionary stages, ages, and environments. At the same time, surveys of debris disks are revealing the bulk properties of this class of more evolved objects. This chapter reviews the statistics of these measured global star and disk properties and discusses their constraints on theoretical models describing global disk evolution. Our comparisons of observations to theoretical model predictions extends beyond the traditional viscous evolution framework to include analytical descriptions of magnetic wind effects. Finally, we discuss how recent observational results can provide a framework for models of planet population synthesis and planet formation.more » « less
- 
            Abstract HD 106906 is a planetary system that hosts a wide-orbit companion, as well as an eccentric and flat debris disk, which hold important constraints on its formation and subsequent evolution. The recent observations of the companion constrain its orbit to be eccentric and inclined relative to the plane of the debris disk. Here, we show that, in the presence of the inclined companion, the debris disk quickly (≲5 Myr) becomes warped and puffy. This suggests that the current configuration of the system is relatively recent. We explore the possibility that a recent close encounter with a free-floating planet could produce a companion with orbital parameters that agree with observations of HD 106906 b. We find that this scenario is able to recreate the structure of the debris disk while producing a companion in agreement with observation.more » « less
- 
            While planets are commonly discovered around main-sequence stars, the processes leading to their formation are still far from being understood. Current planet population synthesis models, which aim to describe the planet formation process from the protoplanetary disk phase to the time exoplanets are observed, rely on prescriptions for the underlying properties of protoplanetary disks where planets form and evolve. The recent development in measuring disk masses and disk-star interaction properties, i.e., mass accretion rates, in large samples of young stellar objects demand a more careful comparison between the models and the data. We performed an initial critical assessment of the assumptions made by planet synthesis population models by looking at the relation between mass accretion rates and disk masses in the models and in the currently available data. We find that the currently used disk models predict mass accretion rate in line with what is measured, but with a much lower spread of values than observed. This difference is mainly because the models have a smaller spread of viscous timescales than what is needed to reproduce the observations. We also find an overabundance of weakly accreting disks in the models where giant planets have formed with respect to observations of typical disks. We suggest that either fewer giant planets have formed in reality or that the prescription for planet accretion predicts accretion on the planets that is too high. Finally, the comparison of the properties of transition disks with large cavities confirms that in many of these objects the observed accretion rates are higher than those predicted by the models. On the other hand, PDS70, a transition disk with two detected giant planets in the cavity, shows mass accretion rates well in line with model predictions.more » « less
- 
            Abstract It is generally accepted that the Moon accreted from the disk formed by an impact between the proto-Earth and impactor, but its details are highly debated. Some models suggest that a Mars-sized impactor formed a silicate melt-rich (vapor-poor) disk around Earth, whereas other models suggest that a highly energetic impact produced a silicate vapor-rich disk. Such a vapor-rich disk, however, may not be suitable for the Moon formation, because moonlets, building blocks of the Moon, of 100 m–100 km in radius may experience strong gas drag and fall onto Earth on a short timescale, failing to grow further. This problem may be avoided if large moonlets (≫100 km) form very quickly by streaming instability, which is a process to concentrate particles enough to cause gravitational collapse and rapid formation of planetesimals or moonlets. Here, we investigate the effect of the streaming instability in the Moon-forming disk for the first time and find that this instability can quickly form ∼100 km-sized moonlets. However, these moonlets are not large enough to avoid strong drag, and they still fall onto Earth quickly. This suggests that the vapor-rich disks may not form the large Moon, and therefore the models that produce vapor-poor disks are supported. This result is applicable to general impact-induced moon-forming disks, supporting the previous suggestion that small planets (<1.6R⊕) are good candidates to host large moons because their impact-induced disks would likely be vapor-poor. We find a limited role of streaming instability in satellite formation in an impact-induced disk, whereas it plays a key role during planet formation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    