skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electroadhesive Auxetics as Programmable Layer Jamming Skins for Formable Crust Shape Displays
Shape displays are a class of haptic devices that enable whole-hand haptic exploration of 3D surfaces. However, their scalability is limited by the mechanical complexity and high cost of traditional actuator arrays. In this paper, we propose using electroadhesive auxetic skins as a strain-limiting layer to create programmable shape change in a continuous (“formable crust”) shape display. Auxetic skins are manufactured as flexible printed circuit boards with dielectric-laminated electrodes on each auxetic unit cell (AUC), using monolithic fabrication to lower cost and assembly time. By layering multiple sheets and applying a voltage between electrodes on subsequent layers, electroadhesion locks individual AUCs, achieving a maximum in-plane stiffness variation of 7.6x with a power consumption of 50 μW/AUC. We first characterize an individual AUC and compare results to a kinematic model. We then validate the ability of a 5x5 AUC array to actively modify its own axial and transverse stiffness. Finally, we demonstrate this array in a continuous shape display as a strain-limiting skin to programmatically modulate the shape output of an inflatable LDPE pouch. Integrating electroadhesion with auxetics enables new capabilities for scalable, low-profile, and low-power control of flexible robotic systems.  more » « less
Award ID(s):
2142782
PAR ID:
10509459
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-2365-8
Page Range / eLocation ID:
2591 to 2597
Subject(s) / Keyword(s):
Electrodes , Three-dimensional displays , Costs , Power demand , Shape , Auxetic materials , Scalability
Format(s):
Medium: X
Location:
London, United Kingdom
Sponsoring Org:
National Science Foundation
More Like this
  1. Haptic devices typically rely on rigid actuators and bulky power supply systems, limiting wearability. Soft materials improve comfort, but careful distribution of stiffness is required to ground actuation forces and enable load transfer to the skin. We present Haptiknit, an approach in which soft, wearable, knit textiles with embedded pneumatic actuators enable programmable haptic display. By integrating pneumatic actuators within high- and low-stiffness machine-knit layers, each actuator can transmit 40 newtons in force with a bandwidth of 14.5 hertz. We demonstrate the concept with an adjustable sleeve for the forearm coupled to an untethered pneumatic control system that conveys a diverse array of social touch signals. We assessed the sleeve’s performance for discriminative and affective touch in a three-part user study and compared our results with those of prior electromagnetically actuated approaches. Haptiknit improves touch localization compared with vibrotactile stimulation and communicates social touch cues with fewer actuators than pneumatic textiles that do not invoke distributed stiffness. The Haptiknit sleeve resulted in similar recognition of social touch gestures compared to a voice-coil array but represented a more portable and comfortable form factor. 
    more » « less
  2. Additively manufactured auxetics (structures exhibiting a negative Poisson’s ratio) offer a unique combination of enhanced mechanical strength and energy absorption. These properties can be further improved through strategic material placement and architectural design. This study investigates the feasibility of fabricating bi-material rotating-square auxetic structures composed of flexible and rigid constituents in their squares and hinges. Rotating-square auxetic structures are manufactured via material extrusion using rigid polylactic acid (PLA) and flexible thermoplastic polyurethane (TPU) to explore the effects of material distribution on mechanical performance and failure characteristics at the macro (i.e., component) and meso (i.e., cell) scales. Baseline tests are conducted to quantify single- and bi-material interfacial strength and failure modes under normal, shear, and combined loading conditions. Upon validation of interface integrity, single- and bi-material auxetic structures are fabricated and tested in uniaxial compression. Relative to the TPU single-material structure, the PLA square-TPU hinge structure provides a 33% increase in structural stiffness, increases energy absorption, delays the global densification strain by 10%, yields a structural Poisson’s ratio at least 0.3 lower than its single-material counterpart through global axial strains of 20%, and demonstrates partial shape recovery. Multiscale experimental analyses supplemented by a kinematic model reveal the rotation-dependent stiffening mechanisms of these structures, highlighting the benefits of flexible hinge materials. Bi-material structures with flexible hinges are shown to have bilinear trends in structural stiffness and energy absorption, not intrinsic to their single-material counterparts. These findings highlight the potential of bi-material design strategies in advancing the functionality and tunability of auxetic structures for the next generation of mechanical metamaterials. 
    more » « less
  3. This work reports an engineered platform for the non-contact haptic stimulation on human skins by means of an array of piezoelectric micromachined ultrasonic transducer (pMUT) via the beamforming scheme. Compared to the state-of-art reports, three distinctive achievements have been demonstrated: (1) individual single pMUT unit based on lithium niobate (LN) with measured high SPL (sound pressure level) of 133 dB at 2 mm away; (2) a beamforming scheme simulated and experimentally proved to generate ~2.3x higher pressure near the focal point; and (3) the combination of auto-positioning and haptic stimulations on volunteers with the smallest reported physical device size to achieve haptic sensations. As such, this work could have practical applications in the broad areas to stimulate haptic sensations, such as AR (Augmented Reality), VR (Virtual Reality), and robotics. 
    more » « less
  4. This study investigates the programmable strain sensing capability, auxetic behaviour, and failure modes of 3D-printed, self-monitoring auxetic lattices fabricated from in-house engineered polyetheretherketone (PEEK) reinforced with multi-walled carbon nanotubes (MWCNTs). A skeletally-parametrized geometric modelling framework, combining Voronoi tessellation with 2D wallpaper symmetries, is used to systematically explore a vast range of non-predetermined topologies beyond traditional lattice designs. A representative set of these architectures is realized via fused filament fabrication, and multiscale characterization—including macroscale tensile testing and microstructural analysis—demonstrates tuneable multifunctional performance as a function of MWCNT content and unit cell topology. Real-time resistance measurements track deformation, damage initiation, and progression, with the sensitivity factor increasing from below 1 in the elastic regime (strain sensitivity) to as high as 80 for PEEK/MWCNT at 6 wt.% under inelastic deformation (damage sensitivity). Implicit architecture-topology tailoring further allows fine-tuning of mechanical properties, achieving stiffness values ranging from 9 MPa to 63 MPa and negative Poisson’s ratios between –0.63 and –0.17 using ~3 wt.% MWCNT at a relative density of 25%. Furthermore, a novel piezoresistive finite element model, implemented in Abaqus via a user-defined subroutine, accurately captures the electromechanical response up to the onset of ligament failure, offering predictive capability. These results demonstrate how architecture-topology tuning can be leveraged to customise strain sensitivity and failure modes, enabling the development of multifunctional piezoresistive lattice composites for applications such as smart orthopaedic implants, aerospace skins, and impact-tolerant systems. 
    more » « less
  5. null (Ed.)
    A number of haptic displays based on smart fluidic materials such as electrorheological (ERFs) and magnetorheological fluids (MRFs) have been fabricated. These displays are relevant to medical virtual environments where it is important to create realistic simulations of soft tissues with varying stiffness. In this paper a new haptic device is described that was designed in consideration of the limitations of an earlier MRF display. The new prototype consists of 400 permanent magnets (PMs) arranged in a 20x20 array that is underneath a chamber filled with MRF. The magnetic field within the fluid is controlled by 400 PM stepping motors that move the magnets vertically. The magnetic behavior of the device was simulated using FEM which indicated that its spatial resolution was substantially improved when compared to the earlier prototype and that objects as small as 10 mm can be rendered. The device was fabricated and assembled and measurements demonstrated the accuracy of the FE model. Its novelty is demonstrated by the increased intensity of the magnetic field produced and the enhanced spatial resolution. These features will enable the dynamic presentation of haptic information such as object shape and compliance which will be characterized in future psychophysical experiments. 
    more » « less