skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-thermal emission in gap-mode plasmon photoluminescence
Abstract Photoluminescence from spatially inhomogeneous plasmonic nanostructures exhibits fascinating wavelength-dependent nonlinear behaviors due to the intraband recombination of hot electrons excited into the conduction band of the metal. The properties of the excited carrier distribution and the role of localized plasmonic modes are subjects of debate. In this work, we use plasmonic gap-mode resonators with precise nanometer-scale confinement to show that the nonlinear photoluminescence behavior can become dominated by non-thermal contributions produced by the excited carrier population that strongly deviates from the Fermi-Dirac distribution due to the confinement-induced large-momentum free carrier absorption beyond the dipole approximation. These findings open new pathways for controllable light conversion using nonequilibrium electron states at the nanoscale.  more » « less
Award ID(s):
2005786
PAR ID:
10509561
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Hot-carriers in plasmonic nanostructures, generated via plasmon decay, play key roles in applications like photocatalysis and in photodetectors that circumvent band-gap limitations. However, direct experimental quantification of steady-state energy distributions of hot-carriers in nanostructures has so far been lacking. We present transport measurements from single-molecule junctions, created by trapping suitably chosen single molecules between an ultra-thin gold film supporting surface plasmon polaritons and a scanning probe tip, that can provide quantification of plasmonic hot-carrier distributions. Our results show that Landau damping is the dominant physical mechanism of hot-carrier generation in nanoscale systems with strong confinement. The technique developed in this work will enable quantification of plasmonic hot-carrier distributions in nanophotonic and plasmonic devices. 
    more » « less
  2. Abstract Enhanced electromagnetic fields within plasmonic nanocavity mode volumes enable multiple significant effects that lead to applications in both the linear and nonlinear optical regimes. In this work, enhanced second‐harmonic generation (SHG) is demonstrated from individual plasmonic nanopatch antennas (NPAs) which are formed by separating silver nanocubes from a smooth gold film using a sub‐10 nm zinc oxide spacer layer. When the NPAs are excited at their fundamental plasmon frequency, a 104‐fold increase in the intensity of the SHG wave is observed. Moreover, by integrating quantum emitters that have an absorption energy at the fundamental frequency, a second‐order nonlinear exciton–polariton strong coupling response is observed with a Rabi splitting energy of 19 meV. The nonlinear frequency conversion using NPAs thus provides an excellent platform for nonlinear control of the light−matter interactions in both weak and strong coupling regimes which will have a great potential for applications in optical engineering and information processing. 
    more » « less
  3. Interacting electrons confined in one dimension are generally described by the Luttinger liquid formalism, where the low-energy electronic dispersion is assumed to be linear and the resulting plasmonic excitations are non-interacting. Instead, a Luttinger liquid in one-dimensional materials with nonlinear electronic bands is expected to show strong plasmon–plasmon interactions, but an experimental demonstration of this behaviour has been lacking. Here, we combine infrared nano-imaging and electronic transport to investigate the behaviour of plasmonic excitations in semiconducting single-walled carbon nanotubes with carrier density controlled by electrostatic gating. We show that both the propagation velocity and the dynamic damping of plasmons can be tuned continuously, which is well captured by the nonlinear Luttinger liquid theory. These results contrast with the gate-independent plasmons observed in metallic nanotubes, as expected for a linear Luttinger liquid. Our findings provide an experimental demonstration of one-dimensional electron dynamics beyond the conventional linear Luttinger liquid paradigm and are important for understanding excited-state properties in one dimension. 
    more » « less
  4. Abstract Attainment of quantum‐confined materials with remarkable stoichiometric, geometric, and structural control has been made possible by advances in colloidal nanoparticle synthesis. The quantum states of these systems can be tailored by selective spatial confinement in one, two, or three dimensions. As a result, a multitude of prospects for controlling nanoscale energy transfer have emerged. An understanding of the electronic relaxation dynamics for quantum states of specific nanostructures is required to develop predictive models for controlling energy on the nanoscale. Variable‐temperature, variable‐magnetic field ( ) optical methods have emerged as powerful tools for characterizing transient excited states. For example, magnetic circular photoluminescence (MCPL) spectroscopy can be used to calculate electronic g factors, assign spectroscopic term symbols for transitions within metal nanoclusters, and quantify the energy gaps separating electronic fine‐structure states. spectroscopic methods are effective for isolating the carrier dynamics of specific quantum fine‐structure states, enabling determination of electronic relaxation mechanisms such as electron‐phonon scattering and energy transfer between assembled nanoclusters. In particular ‐MCPL is especially effective for studying electronic spin‐state dynamics and properties. This Review highlights specific examples that emphasize insights obtainable from these methods and discusses prospects for future research directions. 
    more » « less
  5. Abstract Ultrafast optical switching in plasmonic platforms relies on the third‐order Kerr nonlinearity, which is tightly linked to the dynamics of hot carriers in nanostructured metals. Although extensively utilized, a fundamental understanding on the dependence of the switching dynamics upon optical resonances has often been overlooked. Here, all‐optical control of resonance bands in a hybrid photonic‐plasmonic crystal is employed as an empowering technique for probing the resonance‐dependent switching dynamics upon hot carrier formation. Differential optical transmission measurements reveal an enhanced switching performance near the anti‐crossing point arising from strong coupling between local and nonlocal resonance modes. Furthermore, entangled with hot‐carrier dynamics, the nonlinear correspondence between optical resonances and refractive index change results in tailorable dispersion of recovery speeds which can notably deviate from the characteristic lifetime of hot carriers. The comprehensive understanding provides new protocols for optically characterizing hot‐carrier dynamics and optimizing resonance‐based all‐optical switches for operations across the visible spectrum. 
    more » « less