Wideband Array Signal Processing with Real-Time Adaptive Interference Mitigation
Wideband beamforming and interference cancellation for phased array antennas requires advances in signal processing algorithms, software, and specialized hardware platforms. A high-throughput array receiver has been developed that enables communication in radio frequency interference-rich environments with field programmable gate array (FPGA)-based frequency channelization and packetization. In this study, a real-time interference mitigation algorithm was implemented on graphics processing units (GPUs) contained in the data pipeline. The key contribution is a hardware and software pipeline for subchannelized wideband array signal processing with 150 MHz instantaneous bandwidth and interference cancellation with a heterogeneous, distributed, and scaleable digital signal processing (DSP) architecture that achieves 30 dB interferer cancellation null depth in real time with a moving interference source.
more »
« less
- Award ID(s):
- 1636645
- PAR ID:
- 10509612
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 23
- Issue:
- 14
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 6584
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In order to support experimentation with full-duplex (FD) wireless, we integrated the FlexICoN Gen-2 wideband FD radio with the city-scale PAWR COSMOS testbed [1]. In particular, the implemented FD radio consists of an antenna, a customized Gen-2 RF self-interference (SI) canceller box, a USRP software-defined radio (SDR), and a compute node. The RF canceller box includes an RF SI canceller implemented using discrete components on a printed circuit board (PCB), which emulates its RFIC canceller counterpart. The Gen-2 RF SI canceller achieves 50 dB RF SI cancellation across 20 MHz bandwidth using the technique of frequency-domain equalization (FDE) [2]. In this abstract, we present the design and implementation of the remotely accessible Gen-2 wideband FD radio integrated with the COSMOS sandbox at Columbia University. We also present an example real-time wideband FD wireless link demonstration using the GNU Radio software.more » « less
-
We present a set of experiments utilizing wideband real-time adaptive full-duplex (FD) radios, demonstrating simultaneous transmission and reception on the same frequency channel. Each FD radio consists of a circulator-based antenna interface, a switched-capacitor delay-line-based configurable Radio-Frequency Integrated Circuit (RFIC) that implements Self-Interference Cancellation (SIC), an FPGA that optimizes the RFIC configuration in under 1.1 sec and can adapt to environmental changes in under 0.3 sec, and a Software-Defined Radio (SDR) transmitting OFDM-like packets. We demonstrate a real-time adaptive FD radio that achieves the SIC necessary to reach the noise floor across a wide bandwidth of 50 MHz. Then, we use two FD radios to create a wireless link and showcase the superior FD throughput.more » « less
-
In order to support experimentation with full-duplex (FD) wireless, we integrated the FlexICoN Gen-2 wideband FD radio with the city-scale PAWR COSMOS testbed [1]. In particular, the implemented FD radio consists of an antenna, a customized Gen-2 RF self-interference (SI) canceller box, a USRP software-defined radio (SDR), and a compute node. The RF canceller box includes an RF SI canceller implemented using discrete components on a printed circuit board (PCB), which emulates its RFIC canceller counterpart. The Gen-2 RF SI canceller achieves 50 dB RF SI cancellation across 20 MHz bandwidth using the technique of frequency-domain equalization (FDE) [2]. In this abstract, we present the design and implementation of the remotely accessible Gen-2 wideband FD radio integrated with the COSMOS sandbox at Columbia University. We also present an example real-time wideband Fmore » « less
-
In order to enable the simultaneous transmission and reception of wireless signals on the same frequency, a fullduplex (FD) radio must be capable of suppressing the powerful self-interference (SI) signal emitted from the transmitter and picked up by the receiver. Critically, a major bottleneck in wideband FD deployments is the need for adaptive SI cancellation (SIC) that would allow the FD wireless system to achieve strong cancellation across different settings with distinct electromagnetic environments. In this work, we evaluate the performance of an adaptive wideband FD radio in three different locations and demonstrate that it achieves strong SIC in every location across different bandwidths.more » « less
An official website of the United States government

