Composite mantle xenoliths from the Cima Volcanic Field (CA, USA) contain a variety of melt (now glassy) inclusions hosted within mantle phases. The compositions and textures of these melt inclusions have the po- tential to constrain their trapping processes, melt sources, and the rates of ascent of their parent xenoliths. Here we focus on unusual spinel-hosted melt inclusions from one composite xenolith, reporting glass and daughter mineral compositions and textures and attempting to reconstruct inclusion bulk compositions. The xenolith contains spinel-hosted melt inclusions in its harzburgite, olivine-websterite and lherzolite layers; there are none in its orthopyroxenite layer. The glass compositions and reconstructed bulk compositions of the partly-crystallized inclusions correspond to alkaline intermediate melts, mostly trachyandesites. Such melts are most likely to be generated and trapped by vapor-undersaturated phlogopite or amphibole dehydration melting to an assemblage of liquid + spinel + olivine ± pyroxenes. We modeled the near-liquidus phase relations of the inclusion bulk compositions and noted the closest approach of each inclusion to simultaneous saturation with spinel and either phlogopite or amphibole, resulting in estimated trapping pressures of ~0.5–1.5 GPa and temperatures of ~1000–1100 ◦C. The large size of the hosting spinel grains suggests a slow process associated with these breakdown reactions, probably thinning of the lithosphere and steepening of the geotherm during regional extension. A linear correlation between the vesicle area and inclusion area (as proxies for volume) suggests an in-situ exsolution process from melts of relatively uniform volatile initial contents, consistent with trapping of vapor- undersaturated melts that later exsolve vapor during cooling and daughter crystal growth. A negative correla- tion between the glass content in melt inclusions and the size of the inclusion itself suggests a control on the degree of crystallinity with the size. There appears to be a two-stage cooling history captured by the inclusions, forming first prismatic daughter crystals and large round vesicles at the wall of the inclusion, followed by quenching to form a mat of fine crystallites and small vesicles in most inclusions. We connect the final quench to rapid ascent of the xenolith in its host melt, which also triggered partial breakdown of remaining amphibole to fine glassy symplectites.
more »
« less
3D Diffusion of Water in Melt Inclusion‐Bearing Olivine Phenocrysts
Abstract Olivine‐hosted melt inclusions are an important archive of pre‐eruptive processes such as magma storage, mixing and subsequent ascent through the crust. However, this record can be modified by post‐entrapment diffusion of H+through the olivine lattice. Existing studies often use spherical or 1D models to track melt inclusion dehydration that fail to account for complexities in geometry, diffusive anisotropy and sectioning effects. Here we develop a finite element 3D multiphase diffusion model for the dehydration of olivine‐hosted melt inclusions that includes natural crystal geometries and multiple melt inclusions. We use our 3D model to test the reliability of simplified analytical and numerical models (1D and 2D) using magma ascent conditions from the 1977 eruption of Seguam volcano, Alaska. We find that 1D models underestimate melt inclusion water loss, typically by ∼30%, and thus underestimate magma decompression rates, by up to a factor of 5, when compared to the 3D models. An anisotropic analytical solution that we present performs well and recovers decompression rates within a factor of 2, in the situations in which it is valid. 3D models that include multiple melt inclusions show that inclusions can shield each other and reduce the amount of water loss upon ascent. This shielding effect depends on decompression rate, melt inclusion size, and crystallographic direction. Our modeling approach shows that factors such as 3D crystal geometry and melt inclusion configuration can play an important role in constraining accurate decompression rates and recovering water contents in natural magmatic systems.
more »
« less
- Award ID(s):
- 2017897
- PAR ID:
- 10509650
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 25
- Issue:
- 3
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Volatile element concentrations measured in melt inclusions are a key tool used to understand magma migration and degassing, although their original values may be affected by different re-equilibration processes. Additionally, the inclusion-bearing crystals can have a wide range of origins and ages, further complicating the interpretation of magmatic processes. To clarify some of these issues, here we combined olivine diffusion chronometry and melt inclusion data from the 2008 eruption of Llaima volcano (Chile). We found that magma intrusion occurred about 4 years before the eruption at a minimum depth of approximately 8 km. Magma migration and reaction became shallower with time, and about 6 months before the eruption magma reached 3–4 km depth. This can be linked to reported seismicity and ash emissions. Although some ambiguities of interpretation still remain, crystal zoning and melt inclusion studies allow a more complete understanding of magma ascent, degassing, and volcano monitoring data.more » « less
-
Inclusions of basaltic melt trapped inside of olivine phenocrysts during igneous crystallization provide a rich, crystal-scale record of magmatic processes ranging from mantle melting to ascent, eruption, and quenching of magma during volcanic eruptions. Melt inclusions are particularly valuable for retaining information on volatiles such as H 2 O and CO 2 that are normally lost by vesiculation and degassing as magma ascends and erupts. However, the record preserved in melt inclusions can be variably obscured by postentrapment processes, and thus melt inclusion research requires careful evaluation of the effects of such processes. Here we review processes by which melt inclusions are trapped and modified after trapping, describe new opportunities for studying the rates of magmatic and volcanic processes over a range of timescales using the kinetics of post-trapping processes, and describe recent developments in the use of volatile contents of melt inclusions to improve our understanding of how volcanoes work. ▪ Inclusions of silicate melt (magma) trapped inside of crystals formed by magma crystallization provide a rich, detailed record of what happens beneath volcanoes. ▪ These inclusions record information ranging from how magma forms deep inside Earth to its final hours as it ascends to the surface and erupts. ▪ The melt inclusion record, however, is complex and hazy because of many processes that modify the inclusions after they become trapped in crystals. ▪ Melt inclusions provide a primary archive of dissolved gases in magma, which are the key ingredients that make volcanoes erupt explosively.more » « less
-
Abstract Interpreting unrest at silicic volcanoes requires knowledge of the magma storage conditions and dynamics that precede eruptions. The Laguna del Maule volcanic field, Chile, has erupted ~40 km3of rhyolite over the last 20 ka. Astonishing rates of sustained surface inflation at >25 cm/year for >12 years reveal a large, restless system. Integration of geochronologic, petrologic, geomorphic, and geophysical observations provides an unusually rich context to interpret ongoing and prehistoric processes. We present new volatile (H2O, CO2, S, F, and Cl), trace element, and major element concentrations from 109 melt inclusions hosted in quartz, plagioclase, and olivine from seven eruptions. Silicic melts contain up to 8.0 wt. % H2O and 570 ppm CO2. In rhyolites melt inclusions track decompression‐driven fractional crystallization as magma ascended from ~14 to 4 km. This mirrors teleseismic tomography and magnetotelluric findings that reveal a domain containing partial melt spanning from 14 to 4 km. Ce and Cl contents of rhyolites support the generation of compositionally distinct domains of eruptible rhyolite within the larger reservoir. Heat, volatiles, and melt derived from episodic mafic recharge likely incubate and grow the shallow reservoir. Olivine‐hosted melt inclusions in mafic tephra contain up to 2.5 wt. % H2O and 1,140 ppm CO2and proxy for the volatile load delivered via recharge into the base of the silicic mush at ~14 to 8 km. We propose that mafic recharge flushes deeper reaches of the magma reservoir with CO2that propels H2O exsolution, upward accumulation of fluid, pressurization, and triggering of rhyolitic eruptions.more » « less
-
We investigate whether decompression rates derived from three often-disparate petrologic techniques (microlites, bubbles, and melt embayments) can be reconciled or integrated for a more complete understanding of magma ascent in the conduit. We focus on the well-studied and -documented earliest Plinian eruptions (June 12, 1991) of Mount Pinatubo. Using a newly developed two-stage decompression-diffusion model, volatile profiles in quartz-hosted embayments reveal an initial stage of decompression nearly two orders of magnitude slower than final rates. In applying time-integrated models of microlite and bubble nucleation and growth, initial decompression rates from embayments are supported by microlite modeling results, whereas final rates are in close agreement with bubble number densities. This consistency and continuity between speedometers supports the sensitivity of different petrologic recorders to specific regions of the conduit system and highlights the fidelity of embayments as recorders of decompression throughout the entire conduit. Ascent timescales derived from Pinatubo embayments range from hours to days, coinciding with the visual onset of lava effusion leading to explosive activity.more » « less