ABSTRACT AimEcological theory suggests that dispersal limitation and selection by climatic factors influence bacterial community assembly at a continental scale, yet the conditions governing the relative importance of each process remains unclear. The carnivorous pitcher plantSarracenia purpureaprovides a model aquatic microecosystem to assess bacterial communities across the host plant's north–south range in North America. This study determined the relative influences of dispersal limitation and environmental selection on the assembly of bacterial communities inhabitingS. purpureapitchers at the continental scale. LocationEastern United States and Canada. Time Period2016. Major Taxa StudiedBacteria inhabitingS. purpureapitchers. MethodsPitcher morphology, fluid, inquilines and prey were measured, and pitcher fluid underwent DNA sequencing for bacterial community analysis. Null modelling of β‐diversity provided estimates for the contributions of selection and dispersal limitation to community assembly, complemented by an examination of spatial clustering of individuals. Phylogenetic and ecological associations of co‐occurrence network module bacteria was determined by assessing the phylogenetic diversity and habitat preferences of member taxa. ResultsDispersal limitation was evident from between‐site variation and spatial aggregation of individual bacterial taxa in theS. purpureapitcher system. Selection pressure was weak across the geographic range, yet network module analysis indicated environmental selection within subgroups. A group of aquatic bacteria held traits under selection in warmer, wetter climates, and midge abundance was associated with selection for traits held by a group of saprotrophs. Processes that increased pitcher fluid volume weakened selection in one module, possibly by supporting greater bacterial dispersal. ConclusionDispersal limitation governed bacterial community assembly inS. purpureapitchers at a continental scale (74% of between‐site comparisons) and was significantly greater than selection across the range. Network modules showed evidence for selection, demonstrating that multiple processes acted concurrently in bacterial community assembly at the continental scale.
more »
« less
Needle bacterial community structure across the species range of limber pine
Abstract Bacteria on and inside leaves can influence forest tree health and resilience. The distribution and limits of a tree species’ range can be influenced by various factors, with biological interactions among the most significant. We investigated the processes shaping the bacterial needle community across the species distribution of limber pine, a widespread Western conifer inhabiting a range of extreme habitats. We tested four hypotheses: (i) Needle community structure varies across sites, with site-specific factors more important to microbial assembly than host species selection; (ii) dispersal limitation structures foliar communities across the range of limber pine; (iii) the relative significance of dispersal and selection differs across sites in the tree species range; and (iv) needle age structures bacterial communities. We characterized needle communities from the needle surface and tissue of limber pine and co-occurring conifers across 16 sites in the limber pine distribution. Our findings confirmed that site characteristics shape the assembly of bacterial communities across the host species range and showed that these patterns are not driven by dispersal limitation. Furthermore, the strength of selection by the host varied by site, possibly due to differences in available microbes. Our study, by focusing on trees in their natural setting, reveals real needle bacterial dynamics in forests, which is key to understanding the balance between stochastic and deterministic processes in shaping forest tree-microbe interactions. Such understanding will be necessary to predict or manipulate these interactions to support forest ecosystem productivity or assist plant migration and adaptation in the face of global change.
more »
« less
- Award ID(s):
- 1442348
- PAR ID:
- 10509680
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- ISME Communications
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2730-6151
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundThe aerial surface of plants, known as the phyllosphere, hosts a complex and dynamic microbiome that plays essential roles in plant health and environmental processes. While research has focused on root-associated microbiomes, the phyllosphere remains comparatively understudied, especially in forest ecosystems. Despite the global ecological dominance and importance of conifers, no previous study has applied shotgun metagenomics to their phyllosphere microbiomes. ResultsThis study uses metagenomic sequencing to explore the microbial phyllosphere communities of subalpine Western conifer needle surfaces from 67 trees at six sites spanning the Rocky Mountains, including 31 limber pine, 18 Douglas fir, and 18 Engelmann spruce. Sites span ~ 1,075 km and nearly 10° latitude, from Glacier National Park to Rocky Mountain Biological Laboratory, capturing broad environmental variation. Metagenomes were generated for each of the 67 samples, for which we produced individual assemblies, along with three large coassemblies specific to each conifer host. From these datasets, we reconstructed 447 metagenome-assembled genomes (MAGs), 417 of which are non-redundant at the species level. Beyond increasing the total number of extracted MAGs from 153 to 294, the three coassemblies yielded three large MAGs, representing partial sequences of host genomes. Phylogenomics of all microbial MAGs revealed communities predominantly composed of bacteria (n = 327) and fungi (n = 117). We show that both microbial community composition and metabolic potential differ significantly across host tree species and geographic sites, with site exerting a stronger influence than host. ConclusionsThis dataset offers new insights into the microbial communities inhabiting the conifer needle surface, laying the foundation for future research on needle microbiomes across temporal and spatial scales. Variation in functional capabilities, such as volatile organic compound (VOC) degradation and polysaccharide metabolism, closely tracks shifts in taxonomic composition, indicating that host-specific chemistry, local environmental factors, and regional microbial source pools jointly shape ecological roles. Moreover, the observed patterns of mobile genetic elements and horizontal gene transfer suggest that gene exchange predominantly occurs within microbial lineages, with occasional broader transfers dispersing key functional genes (e.g., those involved in polysaccharide metabolism), which may facilitate microbiome adaptation.more » « less
-
Lurgi, Miguel (Ed.)ABSTRACT Microbial communities can be structured by both deterministic and stochastic processes, but the relative importance of these processes remains unknown. The ambiguity partly arises from an inability to disentangle soil microbial processes from confounding factors, such as aboveground plant communities or anthropogenic disturbance. In this study, we characterized the relative contributions of determinism and stochasticity to assembly processes of soil bacterial communities across a large environmental gradient of undisturbed Antarctic soils. We hypothesized that harsh soils would impose a strong environmental selection on microbial communities, whereas communities in benign soils would be structured largely by dispersal. Contrary to our expectations, dispersal was the dominant assembly mechanism across the entire soil environmental gradient, including benign environments. The microbial community composition reflects slowly changing soil conditions and dispersal limitation of isolated sites. Thus, stochastic processes, as opposed to deterministic, are primary drivers of soil ecosystem assembly across space at our study site. This is especially surprising given the strong environmental constraints on soil microorganisms in one of the harshest environments on the planet, suggesting that dispersal could be a driving force in microbial community assembly in soils worldwide. IMPORTANCE Because of their diversity and ubiquity, microbes provide an excellent means to tease apart how natural communities are structured. In general, ecologists believe that stochastic assembly processes, like random drift and dispersal, should dominate in benign environments while deterministic processes, like environmental filtering, should be prevalent in harsh environments. To help resolve this debate, we analyzed microbial community composition in pristine Antarctic soils devoid of human influence or plant communities for eons. Our results demonstrate that dispersal limitation is a surprisingly potent force of community limitation throughout all soil conditions. Thus, dispersal appears to be a driving force of microbial community assembly, even in the harshest of conditions.more » « less
-
Abstract Understanding the factors influencing species range limits is increasingly crucial in anticipating migrations due to human‐caused climate change. In the boreal biome, ongoing climate change and the associated increases in the rate, size, and severity of disturbances may alter the distributions of boreal tree species. Notably, Interior Alaska lacks native pine, a biogeographical anomaly that carries implications for ecosystem structure and function. The current range of lodgepole pine (Pinus contortavar.latifolia) in the adjacent Yukon Territory may expand into Interior Alaska, particularly with human assistance. Evaluating the potential for pine expansion in Alaska requires testing constraints on range limits such as dispersal limitations, environmental tolerance limits, and positive or negative biotic interactions. In this study, we used field experiments with pine seeds and transplanted seedlings, complemented by model simulations, to assess the abiotic and biotic factors influencing lodgepole pine seedling establishment and growth after fire in Interior Alaska. We found that pine could successfully recruit, survive, grow, and reproduce across our broadly distributed network of experimental sites. Our results show that both mammalian herbivory and competition from native tree species are unlikely to constrain pine growth and that environmental conditions commonly found in Interior Alaska fall well within the tolerance limits for pine. If dispersal constraints are released, lodgepole pine could have a geographically expansive range in Alaska, and once established, its growth is sufficient to support pine‐dominated stands. Given the impacts of lodgepole pine on ecosystem processes such as increases in timber production, carbon sequestration, landscape flammability, and reduced forage quality, natural or human‐assisted migration of this species is likely to substantially alter responses of Alaskan forest ecosystems to climate change.more » « less
-
Community assembly describes how different ecological processes shape microbial community composition and structure. How environmental factors impact community assembly remains elusive. Here we sampled microbial communities and >200 biogeochemical variables in groundwater at the Oak Ridge Field Research Center, a former nuclear waste disposal site, and developed a theoretical framework to conceptualize the relationships between community assembly processes and environmental stresses. We found that stochastic assembly processes were critical (>60% on average) in shaping community structure, but their relative importance decreased as stress increased. Dispersal limitation and ‘drift’ related to random birth and death had negative correlations with stresses, whereas the selection processes leading to dissimilar communities increased with stresses, primarily related to pH, cobalt and molybdenum. Assembly mechanisms also varied greatly among different phylogenetic groups. Our findings highlight the importance of microbial dispersal limitation and environmental heterogeneity in ecosystem restoration and management.more » « less
An official website of the United States government
