skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interface potentials inside solid-state batteries: Origins and implications
Interface resistance has become a significant bottleneck for solid-state batteries (SSBs). Most studies of interface resistance have focused on extrinsic mechanisms such as interface reactions and imperfect contact between electrodes and solid electrolytes. Interface potentials are an important intrinsic mechanism that is often ignored. Here, we highlight Kelvin probe force microscopy (KPFM) as a tool to image the local potential at interfaces inside SSBs, examining the existing literature and discussing challenges in interpretation. Drawing analogies with electron transport in metal/semiconductor interfaces, we showcase a formalism that predicts intrinsic ionic resistance based on the properties of the contacting phases, and we emphasize that future battery designs should start from material pairs with low intrinsic resistance. We conclude by outlining future directions in the study of interface potentials through both theory and experiment.  more » « less
Award ID(s):
2054441
PAR ID:
10509716
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
MRS Bulletin
Volume:
48
Issue:
12
ISSN:
0883-7694
Page Range / eLocation ID:
1239 to 1246
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As solid‐state batteries (SSBs) with lithium (Li) metal anodes gain increasing traction as promising next‐generation energy storage systems, a fundamental understanding of coupled electro‐chemo‐mechanical interactions is essential to design stable solid‐solid interfaces. Notably, uneven electrodeposition at the Li metal/solid electrolyte (SE) interface arising from intrinsic electrochemical and mechanical heterogeneities remains a significant challenge. In this work, the thermodynamic origins of mechanics‐coupled reaction kinetics at the Li/SE interface are investigated and its implications on electrodeposition stability are unveiled. It is established that the mechanics‐driven energetic contribution to the free energy landscape of the Li deposition/dissolution redox reaction has a critical influence on the interface stability. The study presents the competing effects of mechanical and electrical overpotential on the reaction distribution, and demarcates the regimes under which stress interactions can be tailored to enable stable electrodeposition. It is revealed that different degrees of mechanics contribution to the forward (dissolution) and backward (deposition) reaction rates result in widely varying stability regimes, and the mechanics‐coupled kinetics scenario exhibited by the Li/SE interface is shown to depend strongly on the thermodynamic and mechanical properties of the SE. This work highlights the importance of discerning the underpinning nature of electro‐chemo‐mechanical coupling toward achieving stable solid/solid interfaces in SSBs. 
    more » « less
  2. Abstract The solid–solid electrode–electrolyte interface represents an important component in solid‐state batteries (SSBs), as ionic diffusion, reaction, transformation, and restructuring could all take place. As these processes strongly influence the battery performance, studying the evolution of the solid–solid interfaces, particularly in situ during battery operation, can provide insights to establish the structure–property relationship for SSBs. Synchrotron X‐ray techniques, owing to their unique penetration power and diverse approaches, are suitable to investigate the buried interfaces and examine structural, compositional, and morphological changes. In this review, we will discuss various surface‐sensitive synchrotron‐based scattering, spectroscopy, and imaging methods for the in situ characterization of solid–solid interfaces and how this information can be correlated to the electrochemical properties of SSBs. The goal is to overview the advantages and disadvantages of each technique by highlighting representative examples, so that similar strategies can be applied by battery researchers and beyond to study similar solid‐solid interface systems. 
    more » « less
  3. Electrification of the transportation sector relies on radical re-imagining of energy storage technologies to provide affordable, high energy density, durable and safe systems. Next generation energy storage systems will need to leverage high energy density anodes and high voltage cathodes to achieve the required performance metrics (longer vehicle range, long life, production costs, safety). Solid-state batteries (SSBs) are promising materials technology for achieving these metrics by enabling these electrode systems due to the underlying material properties of the solid electrolyte ( viz. mechanical strength, electrochemical stability, ionic conductivity). Electro-chemo-mechanical degradation in SSBs detrimentally impact the Coulombic efficiencies, capacity retention, durability and safety in SSBs restricting their practical implementation. Solid|solid interfaces in SSBs are hot-spots of dynamics that contribute to the degradation of SSBs. Characterizing and understanding the processes at the solid|solid interfaces in SSBs is crucial towards designing of resilient, durable, high energy density SSBs. This work provides a comprehensive and critical summary of the SSB characterization with a focus on in situ and operando studies. Additionally, perspectives on experimental design, emerging characterization techniques and data analysis methods are provided. This work provides a thorough analysis of current status of SSB characterization as well as highlights important avenues for future work. 
    more » « less
  4. Solid-state batteries (SSBs) hold the potential to enhance the energy density, power density, and safety of conventional lithium-ion batteries. The theoretical promise of SSBs is predicated on the mechanistic design and comprehensive analysis of various solid–solid interfaces and microstructural features within the system. The spatial arrangement and composition of constituent phases (e.g., active material, solid electrolyte, binder) in the solid-state cathode dictate critical characteristics such as solid–solid point contacts or singularities within the microstructure and percolation pathways for ionic/electronic transport. In this work, we present a comprehensive mesoscale discourse to interrogate the underlying microstructure-coupled kinetic-transport interplay and concomitant modes of resistances that evolve during electrochemical operation of SSBs. Based on a hierarchical physics-based analysis, the mechanistic implications of solid–solid point contact distribution and intrinsic transport pathways on the kinetic heterogeneity is established. Toward designing high-energy-density SSB systems, the fundamental correlation between active material loading, electrode thickness and electrochemical response has been delineated. We examine the paradigm of carbon-binder free cathodes and identify design criteria that can facilitate enhanced performance with such electrode configurations. A mechanistic design map highlighting the dichotomy in kinetic and ionic/electronic transport limitations that manifest at various SSB cathode microstructural regimes is established. 
    more » « less
  5. Abstract The interface between cathode and electrolyte is a significant source of large interfacial resistance in solid‐state batteries (SSBs). Spark plasma sintering (SPS) allows densifying electrolyte and electrodes in one step, which can improve the interfacial contact in SSBs and significantly shorten the processing time. In this work, we proposed a two‐step joining process to prepare cathode (LiCoO2, LCO)/electrolyte (Li0.33La0.57TiO3, LLTO) half cells via SPS. Interdiffusion between Ti4+/Co3+was observed at the interface by SEM/STEM, resulting in the formation of the Li−Ti−La−Co−O and Li−Ti−Co−O phases in LLTO and the Li−Co−Ti−O phase in LCO. Computational modeling was performed to verify that the Li−Ti−Co−O phase has a LiTi2O4host lattice. In a study of interfacial electrical properties, the resistance of this interdiffusion layer was found to be 105 Ω, which is 40 times higher than the resistance of the individual LLTO phase. The formation of an interdiffusion layer is identified as the origin of the high interface resistance in the LLTO/LCO half‐cell. 
    more » « less