ABSTRACT Plainfin midshipman fish (Porichthys notatus) exhibit seasonal auditory plasticity that enhances their reproductive success. During the summer, type I male midshipman acoustically court females and both the males and females exhibit increased auditory sensitivity during this period. The enhanced auditory sensitivity is associated with increased density of sensory hair cells in the saccule but not the utricle, suggesting that different mechanisms underlie physiological plasticity in distinct inner ear regions. To better understand how shifts in hair cell number occur within auditory tissues, we examined cell turnover across breeding states and sexes in midshipman fish. We found that reproductive type I males exhibited less saccular cell proliferation than non-reproductive males without a change in cell death, indicating a net loss of saccular cells during the breeding season. By contrast, saccular cell proliferation increased in summer females, with no seasonal changes in other inner ear epithelia. Collectively, our data reveal that multiple mechanisms are likely to contribute to seasonal auditory plasticity within a single species, potentially within the ear of an individual animal. 
                        more » 
                        « less   
                    
                            
                            Plainfin Midshipman Fish: Songbirds of the Sea
                        
                    
    
            Most of us have heard birds sing during the spring breeding season. Did you know that some fish also sing to attract mates? We study plainfin midshipman fish, a fascinating fish that makes its home along the Pacific Coast of North America. The big male fish sing during the summer months and their sound-producing muscles get bigger in the summer, probably to make them sound more attractive to females. Female midshipman fish go through seasonal changes, too. In the summer their hearing improves, which helps them pick the right male to mate with. We study hearing in female plainfin midshipman, measuring how their ears respond to sound and how the number of hearing cells in their ears changes between winter and summer. We want to know how seasonal changes in hormones affect hearing in this “songbird of the sea”. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1933166
- PAR ID:
- 10509723
- Publisher / Repository:
- Frontiersin.org
- Date Published:
- Journal Name:
- Frontiers for Young Minds
- Volume:
- 11
- ISSN:
- 2296-6846
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The plainfin midshipman, Porichthys notatus, is a seasonally breeding vocal fish that relies on acoustic communication to mediate nocturnal reproductive behaviors. Reproductive females use their auditory senses to detect and localize “singing” males that produce multiharmonic advertisement (mate) calls during the breeding season. Previous work showed that the midshipman saccule, which is considered the primary end organ used for hearing in midshipman and most other fishes, exhibits reproductive state and hormone-dependent changes that enhance saccular auditory sensitivity. In contrast, the utricle was previously posited to serve primarily a vestibular function, but recent evidence in midshipman and related toadfish suggests that it may also serve an auditory function and aid in the detection of behaviorally relevant acoustic stimuli. Here, we characterized the auditory-evoked potentials recorded from utricular hair cells in reproductive and nonreproductive female midshipman in response to underwater sound to test the hypothesis that variation in reproductive state affects utricular auditory sensitivity. We show that utricular hair cells in reproductive females exhibit up to a sixfold increase in the utricular potential magnitude and have thresholds based on measures of particle acceleration (re: 1 ms −2 ) that are 7–10 dB lower than nonreproductive females across a broad range of frequencies, which include the dominant harmonics of male advertisement calls. This enhanced auditory sensitivity of the utricle likely plays an essential role in facilitating midshipman social and reproductive acoustic communication. NEW & NOTEWORTHY In many animals, vocal-acoustic communication is fundamental for facilitating social behaviors. For the vocal plainfin midshipman fish, the detection and localization of social acoustic signals are critical to the species’ reproductive success. Here, we show that the utricle, an inner ear end organ often thought to primarily serve a vestibular function, serves an auditory function that is seasonally plastic and modulated by the animal’s reproductive state effectively enhancing auditory sensitivity to courting male advertisement calls.more » « less
- 
            Teleost fishes have evolved a number of sound-producing mechanisms, including vibrations of the swim bladder. In addition to sound production, the swim bladder also aids in sound reception. While the production and reception of sound by the swim bladder has been described separately in fishes, the extent to which it operates for both in a single species is unknown. Here, using morphological, electrophysiological and modelling approaches, we show that the swim bladder of male plainfin midshipman fish (Porichthys notatus) exhibits reproductive state-dependent changes in morphology and function for sound production and reception. Non-reproductive males possess rostral ‘horn-like’ swim bladder extensions that enhance low-frequency (less than 800 Hz) sound pressure sensitivity by decreasing the distance between the swim bladder and inner ear, thus enabling pressure-induced swim bladder vibrations to be transduced to the inner ear. By contrast, reproductive males display enlarged swim bladder sonic muscles that enable the production of advertisement calls but also alter swim bladder morphology and increase the swim bladder to inner ear distance, effectively reducing sound pressure sensitivity. Taken together, we show that the swim bladder exhibits a seasonal functional plasticity that allows it to effectively mediate both the production and reception of sound in a vocal teleost fish.more » « less
- 
            Abstract In seasonally breeding vertebrates, hormones coordinate changes in nervous system structure and function to facilitate reproductive readiness and success. Steroid hormones often exert their effects indirectly via regulation of neuromodulators, which in turn can coordinate the modulation of sensory input with appropriate motor output. Female plainfin midshipman fish (Porichthys notatus) undergo increased peripheral auditory sensitivity in time for the summer breeding season, improving their ability to detect mates, which is regulated by steroid hormones. Reproductive females also show differences in catecholaminergic innervation of auditory circuitry compared with winter, non-reproductive females as measured by tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholaminergic synthesis. Importantly, catecholaminergic input to the inner ear from a dopaminergic-specific forebrain nucleus is decreased in the summer and dopamine inhibits the sensitivity of the inner ear, suggesting that gonadal steroids may alter auditory sensitivity by regulating dopamine innervation. In this study, we gonadectomized non-reproductive females, implanted them with estradiol (E2) or testosterone (T), and measured TH immunoreactive (TH-ir) fibers in auditory nuclei where catecholaminergic innervation was previously shown to be seasonally plastic. We found that treatment with T, but not E2, reduced TH-ir innervation in the auditory hindbrain. T-treatment also reduced TH-ir fibers in the forebrain dopaminergic cell group that projects to the inner ear, and likely to the auditory hindbrain. Higher T plasma in the treatment group was correlated with reduced-ir TH terminals in the inner ear. These T-treatment induced changes in TH-ir fibers mimic the seasonal downregulation of dopamine in the midshipman inner ear and provide evidence that steroid hormone regulation of peripheral auditory sensitivity is mediated, in part, by dopamine.more » « less
- 
            Abstract Galanin is a peptide that regulates pituitary hormone release, feeding, and reproductive and parental care behaviors. In teleost fish, increased galanin expression is associated with territorial, reproductively active males. Prior transcriptome studies of the plainfin midshipman (Porichthys notatus), a highly vocal teleost fish with two male morphs that follow alternative reproductive tactics, show that galanin is upregulated in the preoptic area‐anterior hypothalamus (POA‐AH) of nest‐holding, courting type I males during spawning compared to cuckolding type II males. Here, we investigate possible differences in galanin immunoreactivity in the brain of both male morphs and females with a focus on vocal‐acoustic and neuroendocrine networks. We find that females differ dramatically from both male morphs in the number of galanin‐expressing somata and in the distribution of fibers, especially in brainstem vocal‐acoustic nuclei and other sensory integration sites that also differ, though less extensively, between the male morphs. Double labeling shows that primarily separate populations of POA‐AH neurons express galanin and the nonapeptides arginine‐vasotocin or isotocin, homologues of mammalian arginine vasopressin and oxytocin that are broadly implicated in neural mechanisms of vertebrate social behavior including morph‐specific actions on vocal neurophysiology in midshipman. Finally, we report a small population of POA‐AH neurons that coexpress galanin and the neurotransmitter γ‐aminobutyric acid. Together, the results indicate that galanin neurons in midshipman fish likely modulate brain activity at a broad scale, including targeted effects on vocal motor, sensory and neuroendocrine systems; are unique from nonapeptide‐expressing populations; and play a role in male‐specific behaviors.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    