Abstract. During the mid-Pliocene warm period (mPWP; 3.264–3.025 Ma), atmospheric CO2 concentrations were approximately 400 ppm, and the Antarctic Ice Sheet was substantially reduced compared to today. Antarctica is surrounded by the Southern Ocean, which plays a crucial role in the global oceanic circulation and climate regulation. Using results from the Pliocene Model Intercomparison Project (PlioMIP2), we investigate Southern Ocean conditions during the mPWP with respect to the pre-industrial period. We find that the mean sea surface temperature (SST) warming in the Southern Ocean is 2.8 °C, while global mean SST warming is 2.4 °C. The enhanced warming is strongly tied to a dramatic decrease in sea ice cover over the mPWP Southern Ocean. We also see a freshening of the ocean (sub)surface, driven by an increase in precipitation over the Southern Ocean and Antarctica. The warmer and fresher surface leads to a highly stratified Southern Ocean that can be related to weakening of the deep abyssal overturning circulation. Sensitivity simulations show that the decrease in sea ice cover and enhanced warming is largely a consequence of the reduction in the Antarctic Ice Sheet. In addition, the mPWP geographic boundary conditions are responsible for approximately half of the increase in mPWP SST warming, sea ice loss, precipitation, and stratification increase over the Southern Ocean. From these results, we conclude that a strongly reduced Antarctic Ice Sheet during the mPWP has a substantial influence on the state of the Southern Ocean and exacerbates the changes that are induced by a higher CO2 concentration alone. This is relevant for the long-term future of the Southern Ocean, as we expect melting of the western Antarctic Ice Sheet in the future, an effect that is not currently taken into account in future projections by Coupled Model Intercomparison Project (CMIP) ensembles.
Abstract. The mid-Pliocene Warm Period (mPWP, 3.3–3.0 Ma) was characterised by an atmospheric CO2 concentration exceeding 400 ppmv with minor changes in continental and orbital configurations. Simulations of this past climate state have improved with newer models but still show some substantial differences from proxy reconstructions. There is little information about atmospheric aerosol concentrations during the Pliocene, but previous work suggests that it could have been quite different from the modern period. Here we apply idealised aerosol scenario experiments to examine the importance of aerosol forcing on mPWP tropical precipitation and the possibility of aerosol uncertainty explaining the mismatch between reconstructions and simulations. The absence of industrial pollutants leads to further warming, especially in the Northern Hemisphere. The Intertropical Convergence Zone (ITCZ) becomes narrower and stronger and shifts northward after removal of anthropogenic aerosols. Though not affecting the location of monsoon domain boundary, removal of anthropogenic aerosol alters the amount of rainfall within the domain, increasing summer rain rate over eastern and southern Asia and western Africa. This work demonstrates that uncertainty in aerosol forcing could be the dominant driver in tropical precipitation changes during the mid-Pliocene: causing larger impacts than the changes in topography and greenhouse gases.
more » « less- Award ID(s):
- 2238875
- PAR ID:
- 10509812
- Publisher / Repository:
- Copernicus
- Date Published:
- Journal Name:
- Climate of the Past
- Volume:
- 20
- Issue:
- 5
- ISSN:
- 1814-9332
- Page Range / eLocation ID:
- 1195 to 1211
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Despite tectonic conditions and atmospheric CO 2 levels ( pCO 2 ) similar to those of present-day, geological reconstructions from the mid-Pliocene (3.3-3.0 Ma) document high lake levels in the Sahel and mesic conditions in subtropical Eurasia, suggesting drastic reorganizations of subtropical terrestrial hydroclimate during this interval. Here, using a compilation of proxy data and multi-model paleoclimate simulations, we show that the mid-Pliocene hydroclimate state is not driven by direct CO 2 radiative forcing but by a loss of northern high-latitude ice sheets and continental greening. These ice sheet and vegetation changes are long-term Earth system feedbacks to elevated pCO 2 . Further, the moist conditions in the Sahel and subtropical Eurasia during the mid-Pliocene are a product of enhanced tropospheric humidity and a stationary wave response to the surface warming pattern, which varies strongly with land cover changes. These findings highlight the potential for amplified terrestrial hydroclimate responses over long timescales to a sustained CO 2 forcing.more » « less
-
Accurate understanding of permafrost dynamics is critical for evaluating and mitigating impacts that may arise as permafrost degrades in the future; however, existing projections have large uncertainties. Studies of how permafrost responded historically during Earth’s past warm periods are helpful in exploring potential future permafrost behavior and to evaluate the uncertainty of future permafrost change projections. Here, we combine a surface frost index model with outputs from the second phase of the Pliocene Model Intercomparison Project to simulate the near‐surface (~3 to 4 m depth) permafrost state in the Northern Hemisphere during the mid-Pliocene warm period (mPWP, ~3.264 to 3.025 Ma). This period shares similarities with the projected future climate. Constrained by proxy-based surface air temperature records, our simulations demonstrate that near‐surface permafrost was highly spatially restricted during the mPWP and was 93 ± 3% smaller than the preindustrial extent. Near‐surface permafrost was present only in the eastern Siberian uplands, Canadian high Arctic Archipelago, and northernmost Greenland. The simulations are similar to near‐surface permafrost changes projected for the end of this century under the SSP5-8.5 scenario and provide a perspective on the potential permafrost behavior that may be expected in a warmer world.
-
Abstract How anthropogenic forcing could change tropical cyclones (TCs) is a keen societal concern owing to its significant socio-economic impacts. However, a global picture of the anthropogenic aerosol effect on TCs has not yet emerged. Here we show that anthropogenic aerosol emission can reduce northern hemisphere (NH) TCs but increase southern hemisphere (SH) TCs primarily through altering vertical wind shear and mid-tropospheric upward motion in the TC formation zones. These circulation changes are driven by anthropogenic aerosol-induced NH-cooler-than-SH and NH-increased versus SH-decreased meridional (equator to mid-latitudes) temperature gradients. The cooler NH produces a low-level southward cross-equatorial transport of moist static energy, weakening the NH ascent in the TC formation zones; meanwhile, the increased meridional temperature gradients strengthen vertical wind shear, reducing NH TC genesis. The opposite is true for the SH. The results may help to constrain the models’ uncertainty in the future TC projection. Reduction of anthropogenic aerosol emission may increase the NH TCs threat.
-
Abstract The aerosol indirect effect (AIE) dominates uncertainty in total anthropogenic aerosol forcing in phase 6 of the Coupled Model Intercomparison Project (CMIP6) models. AIE strength depends on meteorological conditions that have been shown to change between preindustrial (PI) and present-day (PD) climates, such as cloud cover and atmospheric moisture. Hence, AIE strength may depend on background climate state, impacting the dependence of model-based AIE estimates on experiment design or the evolution of AIE strength with intensifying climate change, which has not previously been explicitly evaluated. Using atmosphere-only simulations with prescribed observed sea surface temperatures (SSTs) and sea ice in the National Center for Atmospheric Research (NCAR) Community Earth System Model 2, version 2.1.3 (CESM2), Community Atmosphere Model, version 6.0 (CAM6), model, we impose a PD (2000) aerosol perturbation onto a PI (1850), PD, and PD with a uniform 4 K increase in the SST (PD + 4 K) background climate to assess the dependence of the total aerosol effective radiative forcing (ERF) and AIE on background climate. We find statistically insignificant increases in aerosol ERF when estimated in the different background climates, almost entirely from increases in direct ERF but with some regionally significant compensating signals in PD + 4 K. The absence of an AIE dependence on background climate in our PD simulation may be tied to documented differences in cloud responses to the observed SSTs used in our simulations versus SSTs produced by the fully coupled models from which most cloud feedback studies are derived, known as the “pattern effect.” Our findings indicate that AIE and aerosol forcing overall may not have a strong dependence on the background climate state in the near future but could regionally under extreme climate change.
Significance Statement Diverse model representations of aerosol–cloud interactions strongly contribute to uncertainty in historical anthropogenic aerosol forcing and are associated with uncertainty in climate sensitivity. This study aims to highlight the dependence of aerosol indirect effects on the background climate state in Community Earth System Model 2, version 2.1.3 (CESM2), Community Atmosphere Model, version 6.0 (CAM6), by identifying microphysical and meteorological changes between aerosol-driven atmospheric responses in present-day and preindustrial climate states to understand anthropogenic aerosol-driven forcing more thoroughly.