skip to main content


Title: Seasonal precipitation variability on Svalbard inferred from Holocene sedimentary leaf wax δ 2 H

Svalbard spans large climate gradients, associated with atmospheric circulation patterns and variations in ocean heat content and sea ice cover. Future precipitation increases are projected to peak in the northeast and to mainly occur in winter, but uncertainties underscore the need for reconstructions of long‐term spatial and temporal variations in precipitation amounts and seasonality. We use lipid biomarkers from four sedimentary lake records along a climatic gradient from western to northeastern Svalbard to reconstruct Holocene water cycle changes. We measured the leaf wax hydrogen isotopic composition of long‐chain (terrestrial) and mid‐chain (aquatic)n‐alkanoic acids, reflecting δ2H of precipitation (δ2Hprecip) and lake water (δ2Hlake), respectively. δ2Hprecipvalues mainly reflect summer precipitation δ2H and evapotranspiration, whereas δ2Hlakevalues can reflect various precipitation seasonality due to varying lake hydrology. For one lake, we used the difference between δ2Hprecipand δ2Hlakeprecip‐lake) to infer summer evapotranspiration changes. Relatively2H‐enriched δ2Hprecipvalues and higher εprecip‐lakein the Early and Middle Holocene suggest warm summers with higher evapotranspiration, and/or more proximal summer moisture. Afterc. 6 cal. ka BP,2H‐depleted δ2Hprecipvalues and lower εprecip‐lakeindicate summer cooling, less evapotranspiration, or more distally derived moisture. Early to Middle Holocene decrease in δ2Hlakevalues in two northern Spitsbergen lakes reflects an increase in the proportion of winter relative to summer precipitation, associated with regional warming and increased moisture supply, which may be due to increased distal moisture supply and/or reduced sea ice cover. Our northern Svalbard δ2Hlakerecords suggest great Late Holocene climate variability with periodic winter precipitation increases or decreases in summer precipitation inflow to the lakes. We find that Holocene summer precipitation δ2H values mainly follow changes in summer insolation and temperature, whereas the seasonal distribution of precipitation is sensitive to catchment hydrology, regional ocean surface conditions, and moisture source changes.

 
more » « less
NSF-PAR ID:
10509947
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Boreas
Volume:
53
Issue:
3
ISSN:
0300-9483
Format(s):
Medium: X Size: p. 430-452
Size(s):
p. 430-452
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Arctic precipitation is predicted to increase this century. Records of past precipitation seasonality provide baselines for a mechanistic understanding of the dynamics controlling Arctic precipitation. We present an approach to reconstruct Arctic precipitation seasonality using stable hydrogen isotopes (δ2H) of aquatic plant waxes in neighboring lakes with contrasting water residence times and present a case study of this approach in two lakes on western Greenland. Residence time calculations suggest that growing season lake water δ2H in one lake reflects summer precipitation δ2H, while the other reflects amount‐weighted annual precipitation δ2H and evaporative enrichment. Aquatic plant wax δ2H in the “summer lake” is relatively constant throughout the Holocene, perhaps reflecting competing effects of local summer warmth and increased distal moisture transport due to a strengthened latitudinal temperature gradient. In contrast, aquatic plant wax δ2H in the “mean annual lake” is 100‰2H depleted from 6 to 4 ka relative to the beginning and end of the record. Because there are relatively minor changes in summer precipitation δ2H, we interpret the 100‰2H depletion in mean annual precipitation to reflect an increase in winter precipitation amount, likely accompanied by changes in winter precipitation δ2H and decreased evaporative enrichment. Thus, unlike the “summer lake,” the “mean annual lake” records changes in winter precipitation. This dual‐lake approach may be applied to reconstruct past changes in precipitation seasonality at sites with strong precipitation isotope seasonality and minimal lake water evaporative enrichment.

     
    more » « less
  2. Abstract

    Increased precipitation in the Arctic is a robust feature across model simulations of the coming century, driven by intensification of meridional moisture transport and enhanced local evaporation in the absence of sea ice. These mechanisms are associated with distinct, seasonal, spatial, and, likely, precipitation isotope (δ2HPrecip) expressions. Historical observations of δ2HPrecipreveal a contrast in seasonality between southwestern and northwestern coastal Greenland: δ2HPrecipin northwestern Greenland varies in phase with local temperature, whereas δ2HPrecipin southwestern Greenland is decoupled from local temperature and exhibits little seasonal variation. We test the hypothesis that reduced δ2HPrecipseasonality in southwestern Greenland relative to northwestern Greenland results from dynamic moisture source variations, by diagnosing monthly average moisture sources to three sink regions (Kangilinnguit, Ilulissat, and Qaanaaq) using the Water Accounting Model‐2layers model. All domains demonstrate strong intra‐annual moisture source variations. Moisture to the southernmost region is sourced most remotely in summer and most locally in winter, associated with stronger cooling from the source in summer than winter, promoting more negative δ2HPrecipand counteracting local temperature‐driven seasonality. In comparison, moisture transport distance to the northernmost region is relatively constant, as local sea ice restricts northward migration of the winter moisture source. We simulate seasonal patterns in δ2HPrecipin a simple Rayleigh model, which confirm the importance of source temperature and starting isotopic compositions in determining δ2HPrecipfor these regions. δ2HPrecipsensitivity to moisture source variability suggests these coastal Arctic settings may yield paleoclimate records sensitive to the moisture transport processes predicted to amplify future precipitation.

     
    more » « less
  3. Abstract

    The Arctic hydrological cycle is predicted to intensify as the Arctic warms, due to increased poleward moisture transport during summer and increased evaporation from seas once ice‐covered during winter. Records of past Arctic precipitation seasonality are important because they provide a context for these ongoing changes. In some Arctic lakes, stable isotopes of oxygen and hydrogen (δ18O and δ2H, respectively) vary seasonally, due to seasonal changes in precipitation δ18O and δ2H. We reconstruct precipitation seasonality from Lake N3, a well‐dated lake sediment archive in Disko Bugt, western Greenland, by generating Holocene records of two proxies that are produced at different times of the year, and therefore record different lake water seasonal isotopic compositions. Aquatic plants synthesize waxes throughout the summer, and their δ2H reflects winter‐biased precipitation δ2H at Lake N3, whereas chironomids synthesize their head capsules between late summer and winter, and their δ18O reflects summer‐biased precipitation δ18O at Lake N3. During the middle Holocene at Lake N3, aquatic plant leaf wax was strongly2H‐depleted, while chironomid chitin was18O‐enriched. We guide interpretations of these records using sensitivity tests of a lake water and energy balance model, where we change precipitation amount and isotope seasonality inputs. The sensitivity tests suggest that the contrasting trends between proxies were likely caused by an increase in precipitation amount during all seasons and an increase in precipitation isotope seasonality, in addition to proxy‐specific mechanisms, highlighting the importance of understanding lake‐ and proxy‐specific systematics when interpreting records from sediment archives.

     
    more » « less
  4. Abstract

    Lacustrine δ2H and δ18O isotope proxies are powerful tools for reconstructing past climate and precipitation changes in the Arctic. However, robust paleoclimate record interpretations depend on site‐specific lake water isotope systematics, which are poorly described in the eastern Canadian Arctic due to insufficient modern lake water isotope data. We use modern lake water isotopes (δ18O and δ2H) collected between 1994–1997 and 2017–2021 from a transect of sites spanning a Québec‐to‐Ellesmere Island gradient to evaluate the effects of inflow seasonality and evaporative enrichment on the δ2H and δ18O composition of lake water. Four lakes near Iqaluit, Nunavut sampled biweekly through three ice‐free seasons reflect mean annual precipitation isotopes with slight evaporative enrichment. In a 23° latitudinal transect of 181 lakes, through‐flowing lake water δ2H and δ18O fall along local meteoric water lines. Despite variability within each region, we observe a latitudinal pattern: southern lakes reflect mean annual precipitation isotopes, whereas northern lakes reflect summer‐biased precipitation isotopes. This pattern suggests that northern lakes are more fully flushed with summer precipitation, and we hypothesize that this occurs because the ratio of runoff to precipitation increases with latitude as vegetation cover decreases. Therefore, proxy records from through‐flowing lakes in this region should reflect precipitation isotopes with minimal influence of evaporation, but vegetation changes in lake catchments across a latitudinal transect and through geologic time may influence the seasonality of lake water isotopic compositions. Thus, we recommend that future lake water isotope proxy records are considered in context with temperature and ecological proxy records.

     
    more » « less
  5. Abstract

    We evaluate the efficacy of the stable isotope composition of precipitation and plant waxes as proxies for paleoaltimetry and paleohydrology in the northern tropical Andes. We report monthly hydrogen (δ2Hp) and oxygen (δ18Op) isotope values of precipitation for an annual cycle, and hydrogen isotope values of plant waxes (δ2Hwax) obtained from modern soils along the eastern and western flanks of the Eastern Cordillera of Colombia. δ2Hp, δ18Op, as well as the unweighted mean δ2Hwaxvalues ofn‐C29,n‐C31, andn‐C33n‐alkanes in the eastern flank show a dependence on elevation (R2 = 0.90, 0.82, and 0.65, respectively). In stark contrast, the stable isotope compositions of neither precipitation nor plant waxes from the western flank correlate with elevation (R2 < 0.23), on top of a negligible (p‐value >0.05) correlation between δ2Hwaxand δ2Hp. In general, δ2Hwaxvalues along the eastern flank of the Eastern Cordillera seem to follow the trend of a simple Rayleigh distillation process that is consistent with studies elsewhere on the eastern side of the Andes in South America. Neither δ2Hpnor δ18Op, and therefore δ2Hwax, offer reliable estimates of past elevations in the western flank, due perhaps to water vapor source mixing, evaporation overprint, contrasting plant communities, and/or differences in evapotranspiration. Thus, δ2Hwaxis only reliable for paleohydrology and paleoaltimetry reconstructions on the eastern flank of the Andes, whereas interpretations based on δ2Hpand/or δ18Opwest of the highest point of the Eastern Cordillera need to consider mixing of moisture sources in addition to precipitation amount.

     
    more » « less