skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comprehensiveness, Frequency, and Consistency of Science in Elementary Schedules: The role of leaders in supporting elementary science
Award ID(s):
1761057 1761129
PAR ID:
10510017
Author(s) / Creator(s):
;
Publisher / Repository:
Taylor & Francis
Date Published:
Journal Name:
Science and Children
Volume:
61
Issue:
2
ISSN:
0036-8148
Page Range / eLocation ID:
12 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As computer science (CS) is integrated in elementary science curricula, it is important to consider teachers’ perceptions in how they access CS and support students to engage in CS skills and standards through NGSS-aligned activities. This single case study utilizes the Interconnected Model of Professional Growth (IMPG) to examine teacher change and explore the perspectives of a teacher, through semi-structured interviews, as he implements an NGSS-aligned, project-based CS unit over the course of four years. Findings indicate that the teacher perceived that changes in his practice helped inform changes in student outcomes and the curriculum and, in turn, these changes in outcomes further informed his teaching practice in the next iteration of the unit. Results highlight the importance of reflection and feedback as a way to impact the teaching practice of integrating CS in elementary science education. 
    more » « less
  2. Rajala, A; Cortez, A; Hofmann, R; Jornet, A; Lotz-Sisitka, J; Markauskaite, L (Ed.)
    As computer science (CS) is integrated in elementary science curricula, it is important to consider teachers’ perceptions in how they access CS and support students to engage in CS skills and standards through NGSS-aligned activities. This single case study utilizes the Interconnected Model of Professional Growth (IMPG) to examine teacher change and explore the perspectives of a teacher, through semi-structured interviews, as he implements an NGSS-aligned, project-based CS unit over the course of four years. Findings indicate that the teacher perceived that changes in his practice helped inform changes in student outcomes and the curriculum and, in turn, these changes in outcomes further informed his teaching practice in the next iteration of the unit. Results highlight the importance of reflection and feedback as a way to impact the teaching practice of integrating CS in elementary science education. 
    more » « less
  3. Chinn, C.; Tan, E.; & Kali, Y. (Ed.)
    Computational thinking (CT) is ubiquitous in modern science, yet rarely integrated at the elementary school level. Moreover, access to computer science education at the PK-12 level is inequitably distributed. We believe that access to CT must be available earlier and implemented with the support of an equitable pedagogical framework. Our poster will describe our Accessible Computational Thinking (ACT) research project exploring professional development with elementary teachers on integrating computational thinking with Culturally Responsive Teaching practices. 
    more » « less
  4. Chinn, C.; Tan, E.; Chan, C.; Kali, Y. (Ed.)
    Computational thinking (CT) is ubiquitous in modern science, yet rarely integrated at the elementary school level. Moreover, access to computer science education at the PK-12 level is inequitably distributed. We believe that access to CT must be available earlier and implemented with the support of an equitable pedagogical framework. Our poster will describe our Accessible Computational Thinking (ACT) research project exploring professional development with elementary teachers on integrating computational thinking with Culturally Responsive Teaching practices. 
    more » « less
  5. PurposeThis study is part of a participatory design research project and aims to develop and study pedagogical frameworks and tools for integrating computational thinking (CT) concepts and data science practices into elementary school classrooms. Design/methodology/approachThis paper describes a pedagogical approach that uses a data science framework the research team developed to assist teachers in providing data science instruction to elementary-aged students. Using phenomenological case study methodology, the authors use classroom observations, student focus groups, video recordings and artifacts to detail ways learners engage in data science practices and understand how they perceive their engagement during activities and learning. FindingsFindings suggest student engagement in data science is enhanced when data problems are contextualized and connected to students’ lived experiences; data analysis and data-based decision-making is practiced in multiple ways; and students are given choices to communicate patterns, interpret graphs and tell data stories. The authors note challenges students experienced with data practices including conflict between inconsistencies in data patterns and lived experiences and focusing on data visualization appearances versus relationships between variables. Originality/valueData science instruction in elementary schools is an understudied, emerging and important area of data science education. Most elementary schools offer limited data science instruction; few elementary schools offer data science curriculum with embedded CT practices integrated across disciplines. This research assists elementary educators in fostering children's data science engagement and agency while developing their ability to reason, visualize and make decisions with data. 
    more » « less