skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physiological phenotypes differ among color morphs in introduced common wall lizards ( Podarcis muralis )
Many species exhibit color polymorphisms which have distinct physiological and behavioral characteristics. However, the consistency of morph trait covariation patterns across species, time, and ecological contexts remains unclear. This trait covariation is especially relevant in the context of invasion biology and urban adaptation. Specifically, physiological traits pertaining to energy maintenance are crucial to fitness, given their immediate ties to individual reproduction, growth, and population establishment. We investigated the physiological traits ofPodarcis muralis, a versatile color polymorphic species that thrives in urban environments (including invasive populations in Ohio, USA). We measured five physiological traits (plasma corticosterone and triglycerides, hematocrit, body condition, and field body temperature), which compose an integrated multivariate phenotype. We then tested variation among co‐occurring color morphs in the context of establishment in an urban environment. We found that the traits describing physiological status and strategy shifted across the active season in a morph‐dependent manner—the white and yellow morphs exhibited clearly different multivariate physiological phenotypes, characterized primarily by differences in plasma corticosterone. This suggests that morphs have different strategies in physiological regulation, the flexibility of which is crucial to urban adaptation. The white‐yellow morph exhibited an intermediate phenotype, suggesting an intermediary energy maintenance strategy. Orange morphs also exhibited distinct phenotypes, but the low prevalence of this morph in our study populations precludes clear interpretation. Our work provides insight into how differences among stable polymorphisms exist across axes of the phenotype and how this variation may aid in establishment within novel environments.  more » « less
Award ID(s):
2217826
PAR ID:
10510095
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Date Published:
Journal Name:
Integrative Zoology
Volume:
19
Issue:
3
ISSN:
1749-4877
Page Range / eLocation ID:
505 to 523
Subject(s) / Keyword(s):
color polymorphism physiological status seasonal variation thermoregulation, urban habitat
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Color polymorphic animals offer a unique system for studying intraspecific phenotypic responses to climate change. Discrete color morphs are easy to identify, and correlated trait responses of morphs can indicate how climate warming may facilitate long-term maintenance of polymorphisms. We use a historical dataset spanning 43 years to examine temporal shifts in color morph frequency and body size in response to climate in the Eastern Red-backed Salamander, Plethodon cinereus , which contains a widespread striped/unstriped color polymorphism. We created a pipeline to extract high-throughput trait data from fluid-preserved museum specimens where we batch-photographed salamanders, de-aggregated individual specimens from photographs, and solicited help of community scientists to score color morphs. We used a linear modeling framework that includes information about spatial population structure to demonstrate that color morph frequency and body size vary in response to climate, elevation, and over time, with an overall trend of higher frequency and decreased body size of the striped morph, but increased size of the unstriped morph. These surprising results suggest that morphs may be responding to multiple climate and geographic drivers through co-adapted morphological changes. This work highlights new practices of extracting trait data from museum specimens to demonstrate species phenotypes response to climate change. 
    more » « less
  2. Abstract Colour polymorphic species often exhibit variation in morphology, physiology, and behaviour among morphs. In particular, dominance status may be signalled by the interaction between behaviour and colour morph. Behavioural traits associated with dominance include boldness, exploration, and aggression, which influence access to preferred habitat, territorial defence, and mate acquisition. In ectotherms, the social structure associated with morphs may result in the exploitation of structural niches differing in thermal quality. Hence, social interactions among morphs may generate concordant variation in thermal preference and environmental temperature. However, few studies have assessed thermal preference variation in colour polymorphic species and its covariation with behaviour. Doing so can provide insight into niche specialization and the maintenance of colour polymorphism in populations. Here, we investigated the patterns of covariation in boldness behaviour, exploratory behaviour, and thermal preference in the tree lizard,Urosaurus ornatus. We assessed trait variation between territorial and non‐territorial male morphs and between orange and yellow female morphs. Boldness and exploratory behaviour were repeatable in maleU. ornatusand bolder individuals were significantly more likely to incur tail loss, a potential consequence of bold behaviour. Territorial male morphs were significantly bolder and more exploratory and preferred higher body temperatures with a narrowerTsetthan non‐territorial morphs. Female morphs did not vary in behavioural or thermal traits. This study highlights behavioural mechanisms that underly ecological niche segregation and variable habitat use between morphs in a colour polymorphic species. 
    more » « less
  3. Many organisms facultatively produce different phenotypes depending on their environment, yet relatively little is known about the genetic bases of such plasticity in natural populations. In this study, we describe the genetic variation underlying an extreme form of plasticity––resource polyphenism––in Mexican spadefoot toad tadpoles, Spea multiplicata. Depending on their environment, these tadpoles develop into one of two drastically different forms: a carnivore morph or an omnivore morph. We collected both morphs from two ponds that differed in which morph had an adaptive advantage and performed genome-wide association studies of phenotype (carnivore vs. omnivore) and adaptive plasticity (adaptive vs. maladaptive environmental assessment). We identified four quantitative trait loci associated with phenotype and nine with adaptive plasticity, two of which exhibited signatures of minor allele dominance and two of which (one phenotype locus and one adaptive plasticity locus) did not occur as minor allele homozygotes. Investigations into the genetics of plastic traits in natural populations promise to provide novel insights into how such complex, adaptive traits arise and evolve. 
    more » « less
  4. Abstract Phenotypic differences between urban and rural populations are well‐documented, but the evolutionary processes driving trait variation along urbanization gradients are often unclear. We combined spatial data on abundance, trait variation, and measurements of fitness to understand cline structure and test for natural selection on heritable coat color morphs (melanic, gray) of eastern gray squirrels (Sciurus carolinensis) along an urbanization gradient. Population surveys using remote cameras and visual counts at 76 sites along the urbanization gradient revealed a significant cline in melanism, decreasing from 48% in the city center to <5% in rural woodlands. Among 76 squirrels translocated to test for phenotypic selection, survival was lower for the melanic than gray morph in rural woodlands, whereas there was no difference in survival between color morphs in the city. These results suggest the urban–rural cline in melanism is explained by natural selection favoring the gray morph in rural woodlands combined with relaxed selection in the city. Our study illustrates how trait variation between urban and rural populations can emerge from selection primarily in rural populations rather than adaptation to novel features of the urban environment. 
    more » « less
  5. Teeling, Emma (Ed.)
    Abstract Dissecting the link between genetic variation and adaptive phenotypes provides outstanding opportunities to understand fundamental evolutionary processes. Here, we use a museomics approach to investigate the genetic basis and evolution of winter coat coloration morphs in least weasels (Mustela nivalis), a repeated adaptation for camouflage in mammals with seasonal pelage color moults across regions with varying winter snow. Whole-genome sequence data were obtained from biological collections and mapped onto a newly assembled reference genome for the species. Sampling represented two replicate transition zones between nivalis and vulgaris coloration morphs in Europe, which typically develop white or brown winter coats, respectively. Population analyses showed that the morph distribution across transition zones is not a by-product of historical structure. Association scans linked a 200-kb genomic region to coloration morph, which was validated by genotyping museum specimens from intermorph experimental crosses. Genotyping the wild populations narrowed down the association to pigmentation gene MC1R and pinpointed a candidate amino acid change cosegregating with coloration morph. This polymorphism replaces an ancestral leucine residue by lysine at the start of the first extracellular loop of the protein in the vulgaris morph. A selective sweep signature overlapped the association region in vulgaris, suggesting that past adaptation favored winter-brown morphs and can anchor future adaptive responses to decreasing winter snow. Using biological collections as valuable resources to study natural adaptations, our study showed a new evolutionary route generating winter color variation in mammals and that seasonal camouflage can be modulated by changes at single key genes. 
    more » « less