skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulation of interlayer coupling for electroactive covalent organic framework design
Porous, stacked two-dimensional covalent organic frameworks (2D COFs) bearing semiconducting linkers can support directional charge transfer across adjacent layers of the COF. To better inform the current and possible future design rules for enhancing electron and hole transport in such materials, an understanding of how linker selection and functionalization affects interlayer electronic couplings is essential. We report electronic structure simulation and analysis of electronic couplings across adjacent linker units and to encapsulated species in functionalized electroactive 2D COFs. The detailed dependence of these electronic couplings on interlayer interactions is examined through scans along key interlayer degrees of freedom and through configurational sampling from equilibrium molecular dynamics on semiempirical potential energy surfaces. Beyond affirming the sensitivity of the electronic coupling to interlayer distance and orientation, these studies offer guidance toward linker functionalization strategies for enhancing charge carrier transport in electroactive 2D COFs.  more » « less
Award ID(s):
1848067
PAR ID:
10510108
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
160
Issue:
18
ISSN:
0021-9606
Page Range / eLocation ID:
184704
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We have considered three two-dimensional (2D) π-conjugated polymer network ( i.e. , covalent organic frameworks, COFs) materials based on pyrene, porphyrin, and zinc-porphyrin cores connected via diacetylenic linkers. Their electronic structures, investigated at the density functional theory global-hybrid level, are indicative of valence and conduction bands that have large widths, ranging between 1 and 2 eV. Using a molecular approach to derive the electronic couplings between adjacent core units and the electron-vibration couplings, the three π-conjugated 2D COFs are predicted to have ambipolar charge-transport characteristics with electron and hole mobilities in the range of 65–95 cm 2 V −1 s −1 . Such predicted values rank these 2D COFs among the highest-mobility organic semiconductors. In addition, we have synthesized the zinc-porphyrin based 2D COF and carried out structural characterization via powder X-ray diffraction, high-resolution transmission electron microscopy, and surface area analysis, which demonstrates the feasibility of these electroactive networks. Steady-state and flash-photolysis time-resolved microwave conductivity measurements on the zinc-porphyrin COF point to appreciable, broadband photoconductivity while transmission spectral measurements are indicative of extended π-conjugation. 
    more » « less
  2. Abstract 2D materials can be isolated as monolayer sheets when interlayer interactions involve weak van der Waals forces. These atomically thin structures enable novel topological physics and open chemical questions of how to tune the structure and properties of the sheets while maintaining them as isolated monolayers. Here, this work investigates 2D electroactive sheets that exfoliate in solution into colloidal nanosheets, but aggregate upon oxidation, giving rise to tunable interlayer charge transfer absorption and photoluminescence. This optical behavior resembles interlayer excitons, now intensely studied due to their long‐lived emission, but which remain difficult to tune through synthetic chemistry. Instead, the interlayer excitons of these framework sheets can be modulated through control of solvent, electrolyte, oxidation state, and the composition of the framework building blocks. Compared to other 2D materials, these framework sheets display the largest known interlayer binding strengths, attributable to specific orbital interactions between the sheets, and among the longest interlayer exciton lifetimes. Taken together, this study provides a microscopic basis for manipulating long‐range opto‐electronic behavior in van der Waals materials through molecular synthetic chemistry. 
    more » « less
  3. null (Ed.)
    Understanding the underlying physical mechanisms that govern charge transport in two-dimensional (2D) covalent organic frameworks (COFs) will facilitate the development of novel COF-based devices for optoelectronic and thermoelectric applications. In this context, the low-energy mid-infrared absorption contains valuable information about the structure–property relationships and the extent of intra- and inter-framework “hole” polaron delocalization in doped and undoped polymeric materials. In this study, we provide a quantitative characterization of the intricate interplay between electronic defects, domain sizes, pore volumes, chemical dopants, and three dimensional anisotropic charge migration in 2D COFs. We compare our simulations with recent experiments on doped COF films and establish the correlations between polaron coherence, conductivity, and transport signatures. By obtaining the first quantitative agreement with the measured absorption spectra of iodine doped (aza)triangulene-based COF, we highlight the fundamental differences between the underlying microstructure, spectral signatures, and transport physics of polymers and COFs. Our findings provide conclusive evidence of why iodine doped COFs exhibit lower conductivity compared to doped polythiophenes. Finally, we propose new research directions to address existing limitations and improve charge transport in COFs for applications in functional molecular electronic devices. 
    more » « less
  4. Abstract The first synthesis and comprehensive characterization of two vinyl tetrazine‐linked covalent organic frameworks (COF), TA‐COF‐1 and TA‐COF‐2, are reported. These materials exhibit high crystallinity and high specific surface areas of 1323 and 1114 m2g−1. The COFs demonstrate favorable band positions and narrow band gaps suitable for light‐driven applications. These advantages enable TA‐COFs to act as reusable metal‐free photocatalysts in the arylboronic acids oxidation and light‐induced coupling of benzylamines. In addition, these TA‐COFs show acid sensing capabilities, exhibiting visible and reversible color changes upon exposure to HCl solution, HCl vapor, and NH3vapor. Further, the TA‐COFs outperform a wide range of previously reported COF photocathodes. The tetrazine linker in the COF skeleton represents a significant advancement in the field of COF synthesis, enhancing the separation efficiency of charge carriers during the photoreaction and contributing to their photocathodic properties. TA‐COFs can also degrade 5‐nitro‐1,2,4‐triazol‐3‐one (NTO), an insensitive explosive present in industrial wastewater, in 20 min in a sunlight‐driven photocatalytic process; thus, revealing dual functionality of the protonated TA‐COFs as both photodegradation and Brønsted acid catalysts. This pioneering work opens new avenues for harnessing the potential of the tetrazine linker in COF‐based materials, facilitating advances in catalysis, sensing, and other related fields. 
    more » « less
  5. Metallophthalocyanine (MPc)-linked conductive two-dimensional (2D) metal−organic frameworks (MOFs) hold tremendous promise as modular 2D materials in sensing, catalysis, and energy-related applications due to their combinatory bimetallic system from the MPc core and bridging metal nodes, endowing them with high electrical conductivity and multifunctionality. Despite significant advances, there is a gap in fundamental understanding regarding the periodic effects of metal nodes on the structural properties of MP-linked 2D MOFs. Herein, we report a series of highly crystalline MOFs wherein copper phthalocyanine (CuPc) is linked with Ni, Cu, and Zn nodes (CuPc-O-M, M: Ni, Cu, Zn). The prepared CuPc-O-M MOFs exhibit p-type semiconducting properties with an exceptionally high range of electrical conductivity. Notably, the differences in the 3d orbital configurations of the Ni, Cu, and Zn nodes in CuPc-O-M MOFs lead to perturbations of the interlayer stacking patterns of the 2D framework materials, which ultimately affect material properties, such as semiconducting band gaps and charge transport within the framework. The Cu2+ (3d9) metal node within the eclipsed interlayer stacking of CuPc-O-Cu MOF demonstrates excellent charge transport, which results in the smallest band gap of 1.14 eV and the highest electrical conductivity of 9.3 S m−1, while the Zn2+ (3d10) metal node within CuPc-O-Zn results in a slightly inclined interlayer stacking, leading to the largest band gap of 1.27 eV and the lowest electrical conductivity of 2.9 S m−1. These findings form an important foundation in the strategic molecular design of this class of materials for multifaceted functionality that builds upon the electronic properties of these materials. 
    more » « less