skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atypical peripheral actin band formation via overactivation of RhoA and nonmuscle myosin II in mitofusin 2-deficient cells
Cell spreading and migration play central roles in many physiological and pathophysiological processes. We have previously shown that MFN2 regulates the migration of human neutrophil-like cells via suppressing Rac activation. Here, we show that in mouse embryonic fibroblasts, MFN2 suppresses RhoA activation and supports cell polarization. After initial spreading, the wild-type cells polarize and migrate, whereas theMfn2-/-cells maintain a circular shape. Increased cytosolic Ca2+resulting from the loss of Mfn2 is directly responsible for this phenotype, which can be rescued by expressing an artificial tether to bring mitochondria and endoplasmic reticulum to close vicinity. Elevated cytosolic Ca2+activates Ca2+/calmodulin-dependent protein kinase II, RhoA, and myosin light-chain kinase, causing an overactivation of nonmuscle myosin II, leading to a formation of a prominent F-actin ring at the cell periphery and increased cell contractility. The peripheral actin band alters cell physics and is dependent on substrate rigidity. Our results provide a novel molecular basis to understand how MFN2 regulates distinct signaling pathways in different cells and tissue environments, which is instrumental in understanding and treating MFN2-related diseases.  more » « less
Award ID(s):
2120200
PAR ID:
10510214
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
eLife
Date Published:
Journal Name:
eLife
Volume:
12
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Welch, Matthew (Ed.)
    Cell adhesion to the substrate influences a variety of cell behaviors and its proper regulation is essential for migration, although details of the molecular pathways regulating cell adhesion during migration are lacking. Rap1 is a small GTPase that regulates adhesion in mammalian cells, as well as in Dictyostelium discoideum social amoeba, which is an established model for studying directed cell migration. In Dictyostelium, Rap1 controls adhesion via its effects on adhesion mediator talin and Ser/Thr kinase Phg2, which inhibits myosin II function. Kinase responsive to stress B (KrsB), a homologue of mammalian tumor suppressor MST1/2 and Drosophila Hippo, also regulates cell adhesion and migration, although the molecular mechanism of KrsB action is not understood. Because KrsB has been shown to interact with active Rap1 by mass spectroscopy, we investigated the genetic interaction between Rap1 and KrsB. Cells lacking KrsB have increased adhesion to the substrate, which leads to reduced movement. Expression of constitutively active Rap1 G12V increased cell spreading and adhesion even in the absence of KrsB, suggesting that Rap1 does not require KrsB to mediate cell adhesion. In contrast, KrsB activation requires Rap1 since dominant-negative Rap1 S17N impaired KrsB phosphorylation, which has been previously shown to be necessary for KrsB activity and its function in adhesion. Even though Rap1 did not require KrsB for its function in adhesion, KrsB negatively regulates Rap1 function as seen by increased cortical localization of active Rap1 in KrsB-null cells. Consistently, Rap1 S17N completely reversed the overadhesive phenotype of KrsB-null cells. Furthermore, chemoattractant-induced activation of downstream effectors of Rap1, TalB and Phg2, was increased in the absence of KrsB. Taken together, these findings suggest that Rap1 leads to activation of KrsB, which inhibits Rap1 and its downstream targets, shutting off adhesion. The existence of a negative feedback loop between Rap1 and KrsB may contribute to the dynamic regulation of cell adhesion that is necessary for rapid amoeboid-type migration. 
    more » « less
  2. ABSTRACT Epithelial tube formation requires Rho1-dependent actomyosin contractility to generate the cellular forces that drive cell shape changes and rearrangement. Rho1 signaling is activated by G-protein-coupled receptor (GPCR) signaling at the cell surface. During Drosophila embryonic salivary gland (SG) invagination, the GPCR ligand Folded gastrulation (Fog) activates Rho1 signaling to drive apical constriction. The SG receptor that transduces the Fog signal into Rho1-dependent myosin activation has not been identified. Here, we reveal that the Smog GPCR transduces Fog signal to regulate Rho kinase accumulation and myosin activation in the medioapical region of cells to control apical constriction during SG invagination. We also report on unexpected Fog-independent roles for Smog in maintaining epithelial integrity and organizing cortical actin. Our data support a model wherein Smog regulates distinct myosin pools and actin cytoskeleton in a ligand-dependent manner during epithelial tube formation. 
    more » « less
  3. Abstract Cells respond to physical stimuli, such as stiffness 1 , fluid shear stress 2 and hydraulic pressure 3,4 . Extracellular fluid viscosity is a key physical cue that varies under physiological and pathological conditions, such as cancer 5 . However, its influence on cancer biology and the mechanism by which cells sense and respond to changes in viscosity are unknown. Here we demonstrate that elevated viscosity counterintuitively increases the motility of various cell types on two-dimensional surfaces and in confinement, and increases cell dissemination from three-dimensional tumour spheroids. Increased mechanical loading imposed by elevated viscosity induces an actin-related protein 2/3 (ARP2/3)-complex-dependent dense actin network, which enhances Na + /H + exchanger 1 (NHE1) polarization through its actin-binding partner ezrin. NHE1 promotes cell swelling and increased membrane tension, which, in turn, activates transient receptor potential cation vanilloid 4 (TRPV4) and mediates calcium influx, leading to increased RHOA-dependent cell contractility. The coordinated action of actin remodelling/dynamics, NHE1-mediated swelling and RHOA-based contractility facilitates enhanced motility at elevated viscosities. Breast cancer cells pre-exposed to elevated viscosity acquire TRPV4-dependent mechanical memory through transcriptional control of the Hippo pathway, leading to increased migration in zebrafish, extravasation in chick embryos and lung colonization in mice. Cumulatively, extracellular viscosity is a physical cue that regulates both short- and long-term cellular processes with pathophysiological relevance to cancer biology. 
    more » « less
  4. null (Ed.)
    How migrating cells differentially adapt and respond to extracellular track geometries remains unknown. Using intravital imaging, we demonstrate that invading cells exhibit dorsoventral (top-to-bottom) polarity in vivo. To investigate the impact of dorsoventral polarity on cell locomotion through different confining geometries, we fabricated microchannels of fixed cross-sectional area, albeit with distinct aspect ratios. Vertical confinement, exerted along the dorsoventral polarity axis, induces myosin II–dependent nuclear stiffening, which results in RhoA hyperactivation at the cell poles and slow bleb-based migration. In lateral confinement, directed perpendicularly to the dorsoventral polarity axis, the absence of perinuclear myosin II fails to increase nuclear stiffness. Hence, cells maintain basal RhoA activity and display faster mesenchymal migration. In summary, by integrating microfabrication, imaging techniques, and intravital microscopy, we demonstrate that dorsoventral polarity, observed in vivo and in vitro, directs cell responses in confinement by spatially tuning RhoA activity, which controls bleb-based versus mesenchymal migration. 
    more » « less
  5. Huttenlocher, Anna (Ed.)
    By acting both upstream and downstream of biochemical organizers of the cytoskeleton, physical forces function as central integrators of cell shape and movement. Here we use a combination of genetic, pharmacological, and optogenetic perturbations to probe the role of the conserved mechanosensitive mTORC2 programs in neutrophil polarity and motility. We find that the tension-based inhibition of leading edge signals (Rac, F-actin) that underlies protrusion competition is gated by the kinase-independent role of the complex, whereas the regulation of RhoA and Myosin II-based contractility at the trailing edge depend on mTORC2 kinase activity. mTORC2 is essential for spatial and temporal coordination of the front and back polarity programs for persistent migration under confinement. This mechanosensory pathway integrates multiple upstream signals, and we find that membrane stretch synergizes with biochemical co-input PIP3 to robustly amplify mTORC2 activation. Our results suggest that different signalling arms of mTORC2 regulate spatially and molecularly divergent cytoskeletal programs for efficient coordination of neutrophil shape and movement. [Media: see text] [Media: see text] 
    more » « less