Neuroimaging provides a relatively new approach for advancing engineering education by exploring changes in neurocognition from educational interventions. The purpose of the research described in this paper is to present the results of a preliminary study that measured students’ neurocognition while concept mapping. Engineering design is an iterative process of exploring both the problem and solution spaces. To aid students in exploring these spaces, half of the 66 engineering students who participated in the study were first asked to develop a concept map and then construct a design problem statement. The concept mapping activity significantly reduced neurocognitive activation in the students’ left prefrontal cortex (PFC) compared to students who did not receive this intervention when constructing their problem statement. The sub-region in the left PFC that elicited less activation is generally associated with analytical judgment and goal-directed planning. The group of students who completed the concept mapping activity had greater focused neurocognitive activation in their right PFC. The right PFC is often associated with divergent thinking and ill-structured representation. Patterns of functional connectivity across students’ PFC also differed between the groups. The concept mapping activity reduced the network density in students’ PFC. Lower network density is one measure of lower cognitive effort. These results provide new insight into the neurocognition of engineering students when designing and how educational interventions can change engineering students’ neurocognition. A better understanding of how interventions like concept mapping shape students’ neurocognition, and how this relates to learning, can lay the groundwork for novel advances in engineering education that support new tools and pedagogy for engineering design.
more »
« less
WHO IS THIS DESIGN FOR? PROMOTING CONSIDERATION OF PEOPLE DURING CONCEPT GENERATION
The success of a design is not determined solely by its technical aspects. A design must work for the people who will be using it and in the context in which it will be used. Human-centered design approaches suggest strategies to remind engineering designers of the people impacted by their design decisions. While many of these strategies can be used within and across multiple design phases, during the act of sketching concepts during concept generation, there are few explicit strategies for centering people. We investigate possible impact from a simple intervention during a concept generation task through a between-subjects experiment. Working alone is a single design session, half of a group of mechanical engineering students were asked to explicitly “represent people” within their conceptual sketches. Afterwards, all students reviewed each of their concepts to answer, “Who is this idea for? Who do you imagine would use it?” Those who received the intervention requiring representation of people within concept sketches produced significantly longer reflections with greater depth compared to the control group. Adding drawings of people to sketches resulted in more consideration of the social and physical context of use and of the user's personal preferences and values. Depicting people in generated concepts substantially reduced claims a design is "for everyone,” suggesting explicit representation of potential users produced more thoughtful consideration of diversity among potential users.
more »
« less
- Award ID(s):
- 1943805
- PAR ID:
- 10510331
- Publisher / Repository:
- International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
- Date Published:
- Journal Name:
- International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The research presented in this paper tested whether drawing concept maps changes how engineering students construct design problem statements and whether these differences are observable in their brains. The process of identifying and constructing problem statements is a critical step in engineering design. Concept mapping has the potential to expand the problem space that students explore through the attention given to the relationship between concepts. It helps integrate existing knowledge in new ways. Engineering students (n=66) were asked to construct a problem statement to improve mobility on campus. Half of these students were randomly chosen to first receive instructions about how to develop a concept map and were asked to draw a concept map about mobility systems on campus. The semantic similarity of concepts in the students’ problem statements, the length of their problem statements, and their neurocognition when developing their statements were measured. The results indicated that students who were asked to first draw concept maps produced a more diverse problem statement with less semantically similar words. The students who first developed concept maps also produce significantly longer problem statements. Concept mapping changed students’ neurocognition. The students who used concept mapping elicited less cognitive activation in their left prefrontal cortex (PFC) and more concentrated activation in their right PFC. The right PFC is generally associated with divergent thinking and the left PFC is generally associated with convergent and analytical thinking. These results provide new insight into how educational interventions, like concept mapping, can change students’ cognition and neurocognition. Better understanding how concept maps, and other tools, help students approach complex problems and the associated changes that occur in their brain can lay the groundwork for novel advances in engineering education that support new tools and pedagogy development for design.more » « less
-
Laboratory experience is among the key components in engineering education. It is highly instrumental and plays a significant role in students’ knowledge building, application, and distribution. Learning in laboratories is interactive and often collaborative. On the other hand, students, who learn engineering through online mechanisms, may face challenges with labs, which were frequently documented during the recent pandemic. To address such challenges, innovative online lab learning modules were developed, and learning strategies were implemented in five courses in electrical engineering, Circuits I, Electronics I, Electronics II, Signals and Systems, and Embedded System, through which students gain solid foundation before advancing to senior design projects. The two main incorporated strategies were Open-Ended lab design and Teamwork implementation. Open-Ended lab modules using a lab-in-a-box approach allow students solving lab problems with multiple approaches fostering problem solving both independently and collaboratively. This innovative lab design promotes problem solving at various cognitive levels. It is better suited for concept exploration and collaborative lab learning environments as opposed to the traditional lab works with a prescribed approach leading students to follow certain procedures that may lack the problem exploration stage. Additionally, course instructors formed online lab groups, so that students were sharing the problem-solving process – from ideas formation to solutions – with their peers. To evaluate the effectiveness of the implemented lab strategies, students in the participating courses were randomly divided into experimental and control groups. Both assignment grades and students' feedback via surveys were used to evaluate students' learning. Participants in the control group were learning in labs through the materials that were aligned with core concepts by following predetermined procedures. Students in the experimental group learned through inquiry-based lab materials that required them to work in teams by integrating core concepts together to find a solution and while following one of potentially many approaches. To maximize the online lab learning effect and to replicate the contemporary industry, commerce, and research practices, instructor-structured cooperative learning strategies were applied along with pre-lab simulations and instructional videos. This paper showcases the outcomes of our 2nd year implementation of active learning laboratory strategies on the mixed population of online and face-to-face students. We observed that students in the experimental group generally outperformed their counterparts in labs and showed significantly higher results in the assignments addressing more advanced concept understanding and applications (grand average of 88.3% vs. 66.3%). Surveys also indicated that students saw the benefits of collaboration with Open-Ended lab modules not only for learning concepts, but also for improving their communication skills. Students were able to collaborate on lab problems through various communication tools, such as course Learning Management System (LMS) and mobile apps forming online learning communities. We believe that that the implementation of open-ended collaborative laboratory strategies can assist students in cultivating a deeper comprehension, fostering self-confidence, and refining their critical thinking abilities, all while strengthening their sense of inclusion within the field of engineering.more » « less
-
In engineering education in the United States (as elsewhere), it is widely recognized that the percentage of women and minorities who acquire engineering degrees is significantly lower than their representation in the general population. Many studies have investigated the cause of this lack of representation in engineering and other STEM (science, technology, engineering, and mathematics) degree programs. It is widely recognized that the percentage of women and minorities who acquire engineering degrees is significantly lower than their representation in the general population. Adolescents' occupational identity development depends in large part on their internalized mental models of what a given type of professional “looks like,” their subjective sense of their own capacity to be successful at certain tasks and with certain types of knowledge, and the degree to which they feel as if they belong to a community of practice. This paper considers how the concept of “hidden curriculum” can be applied to how underrepresented students experience engineering education uniquely. The concept of the “hidden curriculum” is used to describe the set of structured learning experiences or conditions that occur beyond the design intent of the learning journey established by the explicit curriculum. The hidden curriculum is typically unintentional, unplanned, and less “controllable” than the explicit curriculum. Despite the difficulty in assessing hidden learning expectations, hidden curriculum consistently places expectations on students beyond the explicit curriculum. It is critical to understand not just what variables prevent underrepresented students from persisting, but also what factors encourage their persistence, as such persistence is critical to ensuring a more diverse engineering workforce. This work focuses on how minoritized groups specifically develop professional identity through the hidden curriculum. We consider their perception of belonging in engineering, their experiences of exclusion in various forms, and the mechanisms by which exclusion transpires. By better understanding the cultural dimensions of exclusion, we hope to advance efforts toward inclusion.more » « less
-
Spatial visualization is the ability to mentally manipulate, visualize, and transform objects in one’s mind. Numerous research studies have reported that spatial ability is strongly associated with predicting success and retention in STEM-related fields such as math, engineering, computer programming, and science. Spatial skills are a critical cognitive ability for many technical fields, particularly engineering. Studies have shown the importance of free-hand sketching in the development of 3-D spatial skills. Similarly, sketching is an integral skill in the engineering design process, especially in the idea-generation phase. However, little work has been performed examining the link between spatial skills and the quality of sketches produced during the engineering design process. There were two phases to data collection for this research. In the first phase, 127 undergraduate engineering students completed four spatial tests. In the second phase, 101 students returned to complete three design tasks. This paper examines the performance of the 17 low spatial and 13 high spatial visualizers on one of these tasks where individuals are asked to design ways for remote villagers to catch and use rainwater. Through analysis of the sketches produced by the students, initial insights indicate that there may be an association between the spatial skills of students and the quality of the sketches they produce for their engineering design solutions. These insights will be discussed relative to the potential influence of spatial skills and sketch quality on engineering education, specifically in developing design capability.more » « less
An official website of the United States government

