skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantitative analysis of Δ9-tetrahydrocannabinol (Δ9-THC) in cannabis plants using the Fast Blue BB (FBBB) and 4-aminophenol (4-AP) colorimetric tests
The Fast Blue BB (FBBB) and 4-aminophenol (4-AP) colorimetric tests have been reportedly used for the qualitative determination of Δ9-THC in plants and for the differentiation between marijuana and hemp-type cannabis. We report the miniaturization of the FBBB colorimetric reaction on a silicone treated filter paper substrate and the analytical figures of merit for a quantitative determination of Δ9-THC for the first time. The reaction between Δ9-THC and FBBB forms a red chromophore that fluoresces when irradiated with visible (480 nm) or UV (365 nm) light, providing a 3-fold increase in sensitivity. Portable instruments are introduced for the objective color determination for both tests and for the fluorescence reading of the THC + FBBB complex. We report a fluorescence signal with Δ9-THC, Δ8-THC, and CBN. The limit of detection (LOD) was determined to be 1.6 ng/μL with precision ~12 % RSD for standard Δ9-THC solutions ranging between 5 and 20 ng/μL. The linear dynamic range for this test is reported between 1.6 ng/μL and 20 ng/μL for the portable fluorescence detector. The miniaturization of both colorimetric tests and the increased sensitivity of the FBBB test using fluorescence analysis, coupled to portable instruments allows for limited quantitative analysis of cannabis plants in the field.  more » « less
Award ID(s):
2122813
PAR ID:
10510501
Author(s) / Creator(s):
; ;
Editor(s):
Banks, Craig
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Talanta Open
Volume:
9
Issue:
C
ISSN:
2666-8319
Page Range / eLocation ID:
100287
Subject(s) / Keyword(s):
Δ9-THC Fast Blue BB 4-AP Marijuana Quantitative analysis
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The 4‐ Aminophenol (4‐AP) colorimetric test is a fast, easy‐to‐use, and cost‐effective presumptive assay of cannabis plant material producing different chromophores with THC‐rich cannabis (blue color) and with CBD‐rich cannabis (pink color). The main drawback of the 4‐AP test is a brief observation window where the color rapidly changes to black, limiting the utility of the test. We now report for the first time, the identification of the product chromophores between 4‐AP and CBD/THC as well as propose an explanation and a solution for the color degradation of the chromophores. The identification of the chromophores is provided by spectroscopic (UV–Vis), chromatography, and mass spectrometry (TLC and LC‐QToF‐MS). Oxidation of excess 4‐AP (Reagent A) in the presence of NaOH (Reagent B) produces the black color observed for the previously reported 4‐AP tests and reported in the literature. The adjustment of reactants concentrations and volumes of 4‐AP:THC/CBD to a 1:1 ratio significantly reduces the black oxidation by‐product and increases the observation window up to 2 h instead of the previously reported 5–10 min. For the first time, mass spectrometry and chromatography confirmed that the reaction of THC and CBD with 4‐AP produced chromophores withm/z(M + H) = 420, consistent with proposed indophenol structures. The TLC method developed confirmed the separation between CBD and THC chromophores. The specificity of the test is also reported, showing false positive results for the presence of THC (blue color) for samples of thyme and oregano. LDA and SIMCA models showed that the optimized 4‐AP procedure performs better than the previously reported 4‐AP color test. 
    more » « less
  2. Accurate quantitation of cannabinoids, particularly Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), is essential for regulatory compliance, forensic investigations, and cannabis product development. Traditional methods, such as liquid chromatography (LC) and gas chromatography (GC) coupled with mass spectrometry, provide reliable results but are time-consuming and resource-intensive. This study introduces a rapid and high-throughput analytical method using zone heat-assisted direct analysis in real time mass spectrometry (DART-MS) combined with in-situ flash derivatization. The method employs trimethylphenylammonium hydroxide (TMPAH) for efficient derivatization, allowing for the differentiation of THC, CBD, and their acidic precursors, Δ9-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA). A custom heated transfer zone was implemented to enhance derivatization efficiency and reduce carryover effects. The method was optimized for reagent concentration and gas stream temperature, achieving high specificity by minimizing interference from isomeric cannabinoids. Validation studies demonstrate good accuracy (relative error within ±15.9 %) and precision (relative standard deviation ≤15 %), with limits of quantitation of 7.5 µg/mL for THC/CBD and 0.5 µg/mL for THCA/CBDA. Comparative analysis of cannabis samples showed a strong correlation with reference LC/MS results, highlighting the reliability of the proposed method. DART-MS offers a significant time advantage, requiring only 10 s per analysis, making it a promising tool for high-throughput screening of cannabis samples in forensic laboratories. 
    more » « less
  3. IntroductionThe medical and recreational use of cannabis has increased in the United States. Its chronic use can have detrimental effects on the neurobiology of the brain—effects that are age-dependent. This was an exploratory study looking at the effects of chronically inhaled vaporized cannabis on brain structure in adult female mice. MethodsAdult mice were exposed daily to vaporized cannabis (10.3% THC and 0.05% CBD) or placebo for 21 days. Following cessation of treatment mice were examined for changes in brain structure using voxel-based morphometry and diffusion weighted imaging MRI. Data from each imaging modality were registered to a 3D mouse MRI atlas with 139 brain areas. ResultsMice showed volumetric changes in the forebrain particularly the prefrontal cortex, accumbens, ventral pallidum, and limbic cortex. Many of these same brain areas showed changes in water diffusivity suggesting alterations in gray matter microarchitecture. DiscussionThese data are consistent with much of the clinical findings on cannabis use disorder. The sensitivity of the dopaminergic system to the daily exposure of vaporized cannabis raises concerns for abuse liability in drug naïve adult females that initiate chronic cannabis use. 
    more » « less
  4. A water-soluble host molecule can bind tetrahydrocannabinol ( Δ9-THC ) and its metabolites in aqueous solution. By pairing this recognition event in a sensing array with fluorescent reporters and varying external mediators, pattern recognition-based detection is possible, which allows selective discrimination of the THC metabolites. The selective sensing can be performed in aqueous solution with micromolar sensitivity, as well as in biofluids such as urine and saliva. Metabolites as similar as Δ8- and Δ9-THC , differing only in the position of a double bond, can be distinguished. 
    more » « less
  5. Acephate is an organophosphorus pesticide (OP) that is widely used to control insects in agricultural fields such as in vegetables and fruits. Toxic OPs can enter human and animal bodies and eventually lead to chronic or acute poisoning. However, traditional enzyme inhibition and colorimetric methods for OPs detection usually require complicated detection procedures and prolonged time and have low detection sensitivity. High-sensitivity monitoring of trace levels of acephate residues is of great significance to food safety and human health. Here, we developed a simple method for ultrasensitive quantitative detection of acephate based on the carbon quantum dot (CQD)-mediated fluorescence inner filter effect (IFE). In this method, the fluorescence from CQDs at 460 nm is quenched by 2,3-diaminophenazine (DAP) and the resulting fluorescence from DAP at 558 nm is through an IFE mechanism between CQDs and DAP, producing ratiometric responses. The ratiometric signal I 558 / I 460 was found to exhibit a linear relationship with the concentration of acephate. The detection limit of this method was 0.052 ppb, which is far lower than the standards for acephate from China and EU in food safety administration. The ratiometric fluorescence sensor was further validated by testing spiked samples of tap water and pear, indicating its great potential for sensitive detection of trace OPs in complex matrixes of real samples. 
    more » « less