skip to main content


This content will become publicly available on February 27, 2025

Title: Methyl α‐D‐galactopyranosyl‐(1→3)‐β‐D‐galactopyranoside and methyl β‐D‐galactopyranosyl‐(1→3)‐β‐D‐galactopyranoside: Glycosidic linkage conformation determined from MA'AT analysis
Abstract

MA'ATanalysis has been applied to two biologically‐importantO‐glycosidic linkages in two disaccharides, α‐D‐Galp‐(1→3)‐β‐D‐GalpOMe (3) and β‐D‐Galp‐(1→3)‐β‐D‐GalpOMe (4). Using density functional theory (DFT) to obtain parameterized equations relating a group of trans‐O‐glycosidic NMR spin‐couplings to eitherphi(ϕ') orpsi(ψ'), and experimental3JCOCH,2JCOC, and3JCOCCspin‐couplings measured in aqueous solution in13C‐labeled isotopomers, probability distributions ofϕ'andψ'in each linkage were determined and compared to those determined by aqueous 1‐μs molecular dynamics (MD) simulation. Good agreement was found between theMA'ATand single‐state MD conformational models of these linkages for the most part, with modest (approximately <15°) differences in the mean values ofϕ'andψ', although the envelope of allowed angles (encoded in circular standard deviations or CSDs) is consistently larger forϕ'determined fromMA'ATanalysis than from MD for both linkages. TheMA'ATmodel of the α‐Galp‐(1→3)‐β‐Galplinkage agrees well with those determined previously using conventional NMR methods (3JCOCHvalues and/or1H‐1H NOEs), but some discrepancy was observed for the β‐Galp‐(1→3)‐β‐Galplinkage, which may arise from errors in the conventions used to describe the linkage torsion angles. Statistical analyses of X‐ray crystal structures show ranges ofϕ'andψ'for both linkages that include the mean angles determined fromMA'ATanalyses, although both angles adopt a wide range of values in the crystalline state, withϕ'in β‐Galp‐(1→3)‐β‐Galplinkages showing greater‐than‐expected conformational variability.

 
more » « less
NSF-PAR ID:
10510767
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Magnetic Resonance in Chemistry
Volume:
62
Issue:
7
ISSN:
0749-1581
Format(s):
Medium: X Size: p. 544-555
Size(s):
p. 544-555
Sponsoring Org:
National Science Foundation
More Like this
  1. Methyl 2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranoside (methyl β-chitobioside), (IV), crystallizes from aqueous methanol at room temperature to give a structure (C17H30N2O22·CH3OH) containing conformational disorder in the exocyclic hydroxymethyl group of one of its βGlcNAc residues. As observed in other X-ray structures of disaccharides containing β-(1→4)O-glycosidic linkages, inter-residue hydrogen bonding between O3H of the βGlcNAc bearing the OCH3aglycone and O5 of the adjacent βGlcNAc is observed based on the 2.79 Å internuclear distance between the O atoms. The structure of (IV) was compared to that determined previously for 2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranose (β-chitobiose), (III). TheO-glycosidic linkage torsion angles,phi(ϕ) andpsi(ψ), in (III) and (IV) differ by 6–8°. TheN-acetyl side chain conformation in (III) and (IV) shows some context dependence, with the C1—C2—N—Ccartorsion angle 10–15° smaller for the βGlcNAc residue involved in the internalO-glycosidic linkage. In (IV), conformational disorder is observed in the exocyclic hydroxymethyl (–CH2OH) group in the βGlcNAc residue bearing the OCH3aglycone, and a fitting of the electron density indicates an approximate 50:50 distribution of thegauchegauche(gg) andgauchetrans(gt) conformers in the lattice. Similar behavior is not observed in (III), presumably due to the different packing structure in the vicinity of the –CH2OH substituent that affects its ability to hydrogen bond to proximal donors/acceptors. Unlike (IV), a re-examination of the previously reported electron density of (III) revealed conformational disorder in theN-acetyl side chain attached to the reducing-end βGlcNAc residue caused by rotation about the C2—N bond.

     
    more » « less
  2. Two disaccharides, methyl β-d-galactopyranosyl-(1→4)-α-d-glucopyranoside (1) and methyl β-d-galactopyranosyl-(1→4)-3-deoxy-α-d-ribo-hexopyranoside (3), were prepared with selective 13C-enrichment to allow measurement of six trans-O-glycosidic J-couplings (2JCOC, 3JCOCH, and 3JCOCC) in each compound. Density functional theory (DFT) was used to parameterize Karplus-like equations that relate these J-couplings to either ϕ or ψ. MA’AT analysis was applied to both linkages to determine mean values of ϕ and ψ in each disaccharide and their associated circular standard deviations (CSDs). Results show that deoxygenation at C3 of 1 has little effect on both the mean values and librational motions of the linkage torsion angles. This finding implies that, if inter-residue hydrogen bonding between O3H and O5′ of 1 is present in aqueous solution and persistent, it plays little if any role in dictating preferred linkage conformation. Hydrogen bonding may lower the energy of the preferred linkage geometry but does not determine it to any appreciable extent. Aqueous 1-μs MD simulation supports this conclusion and also indicates greater conformational flexibility in deoxydisaccharide 3 in terms of sampling several, conformationally distinct, higher-energy conformers in solution. The populations of these latter conformers are low (3–14%) and could not be validated by MA’AT analysis. If the MD model is correct, however, C3 deoxygenation does enable conformational sampling over a wider range of ϕ/ψ values, but linkage conformation in the predominant conformer is essentially identical in both 1 and 3. 
    more » « less
  3. null (Ed.)
    The crystal structure of methyl 2-acetamido-2-deoxy-β-D-glycopyranosyl-(1→4)-β-D-mannopyranoside monohydrate, C 15 H 27 NO 11 ·H 2 O, was determined and its structural properties compared to those in a set of mono- and disaccharides bearing N -acetyl side-chains in βGlcNAc aldohexopyranosyl rings. Valence bond angles and torsion angles in these side chains are relatively uniform, but C—N (amide) and C—O (carbonyl) bond lengths depend on the state of hydrogen bonding to the carbonyl O atom and N—H hydrogen. Relative to N -acetyl side chains devoid of hydrogen bonding, those in which the carbonyl O atom serves as a hydrogen-bond acceptor display elongated C—O and shortened C—N bonds. This behavior is reproduced by density functional theory (DFT) calculations, indicating that the relative contributions of amide resonance forms to experimental C—N and C—O bond lengths depend on the solvation state, leading to expectations that activation barriers to amide cis – trans isomerization will depend on the polarity of the environment. DFT calculations also revealed useful predictive information on the dependencies of inter-residue hydrogen bonding and some bond angles in or proximal to β-(1→4) O -glycosidic linkages on linkage torsion angles ϕ and ψ. Hypersurfaces correlating ϕ and ψ with the linkage C—O—C bond angle and total energy are sufficiently similar to render the former a proxy of the latter. 
    more » « less
  4. The crystal structure of methyl α-D-mannopyranosyl-(1→3)-2- O -acetyl-β-D-mannopyranoside monohydrate, C 15 H 26 O 12 ·H 2 O, ( II ), has been determined and the structural parameters for its constituent α-D-mannopyranosyl residue compared with those for methyl α-D-mannopyranoside. Mono- O -acetylation appears to promote the crystallization of ( II ), inferred from the difficulty in crystallizing methyl α-D-mannopyranosyl-(1→3)-β-D-mannopyranoside despite repeated attempts. The conformational properties of the O -acetyl side chain in ( II ) are similar to those observed in recent studies of peracetylated mannose-containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in ( II ) elongates by ∼0.02 Å upon O -acetylation. The phi (φ) and psi (ψ) torsion angles that dictate the conformation of the internal O -glycosidic linkage in ( II ) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated ( II ) using the statistical program MA′AT , with a greater disparity found for ψ (Δ = ∼16°) than for φ (Δ = ∼6°). 
    more » « less
  5. Methyl β-lactoside [methyl β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside] monohydrate, C 13 H 24 O 11 ·H 2 O, (I), was obtained via spontaneous transformation of methyl β-lactoside methanol solvate, (II), during air-drying. Cremer–Pople puckering parameters indicate that the β-D-Gal p (β-D-galactopyranosyl) and β-D-Glc p (β-D-glucopyranosyl) rings in (I) adopt slightly distorted 4 C 1 chair conformations, with the former distorted towards a boat form ( B C1,C4 ) and the latter towards a twist-boat form ( O5 S C2 ). Puckering parameters for (I) and (II) indicate that the conformation of the βGal p ring is slightly more affected than the βGlc p ring by the solvomorphism. Conformations of the terminal O -glycosidic linkages in (I) and (II) are virtually identical, whereas those of the internal O -glycosidic linkage show torsion-angle changes of 6° in both C—O bonds. The exocyclic hydroxymethyl group in the βGal p residue adopts a gt conformation (C4′ anti to O6′) in both (I) and (II), whereas that in the βGlc p residue adopts a gg ( gauche – gauche ) conformation (H5 anti to O6) in (II) and a gt ( gauche – trans ) conformation (C4 anti to O6) in (I). The latter conformational change is critical to the solvomorphism in that it allows water to participate in three hydrogen bonds in (I) as opposed to only two hydrogen bonds in (II), potentially producing a more energetically stable structure for (I) than for (II). Visual inspection of the crystalline lattice of (II) reveals channels in which methanol solvent resides and through which solvent might exchange during solvomorphism. These channels are less apparent in the crystalline lattice of (I). 
    more » « less