skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: VT‐NMR Analysis of Rotation‐Inversion of N ‐(4‐hydroxybutyl)‐ N ‐(2,2,2‐trifluoroethyl) tert ‐butyl Carbamate: Utilizing the −CH 2 CF 3 Appendage as a Reporter on E / Z ‐Isomerization
Abstract The rotational barrier about the CN carbamate bond ofN‐(4‐hydroxybutyl)‐N‐(2,2,2‐trifluoroethyl)tert‐butyl carbamate1was determined by variable temperature (VT)13C and19F NMR spectroscopy. The −CH2CF3 appendage reports on rotational isomerism and allows for the observation of separate signals for the E‐ and Z‐ensembles at low temperature. The activation barrier for E/Z‐isomerization was quantified using Eyring‐Polanyi theory which requires the measurements of the maximum difference in Larmor frequency Δνmax and the convergence temperature Tc. Both Δνmax and Tc were interpolated by analyzing sigmoidal functions fitted to data describing signal separation and the quality of the superposition of the E‐ and Z‐signals, respectively. Methods for generating the quality‐of‐fit parameters for Lorentzian line shape analysis are discussed. Our best experimental value for the rotational barrier ΔGc(1)=15.65±0.13 kcal/mol is compared to results of a higher level ab initio study of the modelN‐ethyl‐N‐(2,2,2‐trifluoroethyl) methyl carbamate.  more » « less
Award ID(s):
2153206
PAR ID:
10510926
Author(s) / Creator(s):
;
Publisher / Repository:
Chemistry Europe
Date Published:
Journal Name:
ChemistrySelect
Volume:
9
Issue:
16
ISSN:
2365-6549
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Potential energy surface (PES) analyses at the SMD[MP2/6–311++G(d,p)] level and higher‐level energies up to MP4(fc,SDTQ) are reported for the fluorinated tertiary carbamateN‐ethyl‐N‐(2,2,2‐trifluoroethyl) methyl carbamate (VII) and its parent systemN,N‐dimethyl methyl carbamate (VI). Emphasis is placed on the analysis of the rotational barrier about the CN carbamate bond and its interplay with the hybridization of theN‐lone pair (NLP). All rotational transition state (TS) structures were found by computation of 1D relaxed rotational profiles but only 2D PES scans revealed the rotation‐inversion paths in a compelling fashion. We found four unique chiral minima ofVII, one pair each ofE‐andZ‐rotamers, and we determined theeightunique rotational TS structures associated with every possibleE/Z‐isomerization path. It is a significant finding that all TS structures featureN‐pyramidalization whereas the minima essentially contain sp2‐hybridized nitrogen. We will show that the TS stabilities are affected by the synergetic interplay between NLP/CO2repulsion minimization, NLP→σ*(CO) negative hyperconjugation, and two modes of intramolecular through‐space electrostatic stabilization. We demonstrate how Boltzmann statistics must be applied to determine the predicted experimental rotational barrier based on the energetics of all eight rotamerization pathways. The computed barrier forVIIis in complete agreement with the experimentally measured barrier of the very similar fluorinated carbamateN‐Boc‐N‐(2,2,2‐trifluoroethyl)‐4‐aminobutan‐1‐olII. NMR properties ofVIIwere calculated with a variety of density functional/basis set combinations and Boltzmann averaging over theE‐andZ‐rotamers at our best theoretical level results in good agreement with experimental chemical shifts δ(13C) andJ(13C,19F) coupling constants ofII(within 6 %). 
    more » « less
  2. Abstract The syntheses are reported of Nϵ‐(2,2,2‐trifluoroethyl)‐D,L‐lysine (tFK) and Nζ‐(2,2,2‐trifluoroethyl)‐D,L‐homolysine (tFK+1) from amino alcohols HO−(CH2)n−NH2. The syntheses involve reductive amination, Appel bromination, and the stereoselective bond formation between Cα of the amino acid and the fluorinated alkyl chain in the Schöllkopf bislactim amino acid synthesis. The methyl esters of the fluorinated amino acids are the relevant substrates for oligopeptide synthesis. With theR‐Schöllkopf reagent, we stereoselectively generated methyl Nϵ‐boc‐Nϵ‐(2,2,2‐trifluoroethyl)‐L‐lysinate and methyl Nζ‐boc‐Nζ‐(2,2,2‐trifluoroethyl)‐L‐homolysinate. Products and intermediates were characterized by 1H NMR, 13C NMR, COSY, HSQC, and LCMS. A variety of N‐functionality may be introduced by reacting hemiacetals with different appendages. This fluorine modification reduces the sidechain N‐basicity by combined ‐I effect of the three fluorines. This effect increases the [amine]/[ammonium ion] ratio of the sidechain amine in lysine to facilitate carbamylation at lower pH conditions. 
    more » « less
  3. Abstract The overarching goal of this study is to effect the elimination of platinum from adducts withcis–C≡C−Pt−C≡C‐ linkages, thereby generating novel conjugated polyynes. Thus, the bis(hexatriynyl) complextrans‐(p‐tol3P)2Pt((C≡C)3H)2is treated with 1,3‐diphosphines R2C(CH2PPh2)2to generate (R2C(CH2PPh2)2)2Pt((C≡C)3H)2(14; R=c,n‐Bu;e,p‐tolCH2). These condense with the diiodide complexes R2C(CH2PPh2)2PtI2(9 a,c) in the presence of CuI (cat.) and excess HNEt2to give the title macrocycles [(R2C(CH2PPh2)2)Pt(C≡C)3]4(16 c,e) as adducts of the byproduct [H2NEt2]+I(30–66 %). DOSY NMR experiments establish that this association is maintained in solution, but NaOAc removes the ammonium salt. The bis(triethylsilylpolyynyl) complexes (n‐Bu2C(CH2PPh2)2)Pt((C≡C)nSiEt3)2(n=2, 3) are synthesized analogously to14 c. They react with I2at rt to give mainly the diiodide complex9 cand the coupling product Et3Si(C≡CC≡C)nSiEt3. The possibility of competing reactions giving IC≡C species is investigated. Analogous reactions of the Pt4C24macrocycle16 calso give9 c, but no sp13C NMR signals or mass spectrometric Cxz+ions (x=24–100) could be detected. It is proposed that some cyclo[24]carbon is generated, but then rapidly converts to other forms of elemental carbon. No cyclotetracosane (C24H48) is detected when this sequence is carried out in the presence of PtO2and H2
    more » « less
  4. Abstract A new nonheme iron(II) complex, FeII(Me3TACN)((OSiPh2)2O) (1), is reported. Reaction of1with NO(g)gives a stable mononitrosyl complex Fe(NO)(Me3TACN)((OSiPh2)2O) (2), which was characterized by Mössbauer (δ=0.52 mm s−1, |ΔEQ|=0.80 mm s−1), EPR (S=3/2), resonance Raman (RR) and Fe K‐edge X‐ray absorption spectroscopies. The data show that2is an {FeNO}7complex with anS=3/2 spin ground state. The RR spectrum (λexc=458 nm) of2combined with isotopic labeling (15N,18O) reveals ν(N‐O)=1680 cm−1, which is highly activated, and is a nearly identical match to that seen for the reactive mononitrosyl intermediate in the nonheme iron enzyme FDPnor (ν(NO)=1681 cm−1). Complex2reacts rapidly with H2O in THF to produce the N‐N coupled product N2O, providing the first example of a mononuclear nonheme iron complex that is capable of converting NO to N2O in the absence of an exogenous reductant. 
    more » « less
  5. Abstract Reduction of the cobalt(II) chloride complex, Ph2B(tBuIm)2Co(THF)Cl (1) in the presence oftBuN≡C affords the diamagnetic, square planar cobalt(I) complex Ph2B(tBuIm)2Co(C≡NtBu)2(2). This is a rare example of a 16‐electron cobalt(I) complex that is structurally related to square planar noble metal complexes. Accordingly, the electronic structure of2, as calculated by DFT, reveals that the HOMO is largely dz2in character. Complex2is readily oxidized to its cobalt(II) congener [Ph2B(tBuIm)2Co(C=NtBu)2]BPh4(3‐BPh4), whose EPR spectral parameters are characteristic of low‐spin d7with an unpaired electron in an orbital of dz2parentage. This is also consistent with the results of DFT calculations. Despite its 16‐electron configuration and the dz2parentage of the HOMO, the only tractable reactions of2involve one electron oxidation to afford3. 
    more » « less