skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rotation‐Inversion Isomerization of Tertiary Carbamates: Potential Energy Surface Analysis of Multi‐Paths Isomerization Using Boltzmann Statistics
Abstract The front cover artwork is provided by Prof. Rainer Glaser's group at the Missouri University of Science and Technology. The image shows one of four potential energy surfaces generated from our rotation‐inversion study of tertiary carbamates and highlights two of the eight possible transition state pathways between two ensembles of E‐ and Z‐minima. In the context of synthetic studies of fluorinated carbamates R1O−CO−N(R2)CH2CF3, we unexpectedly observed two sets of 13C NMR quartets for the CF3 group and we needed to understand their origin. Read the full text of the Research Article at 10.1002/cphc.2022005442.  more » « less
Award ID(s):
2153206
PAR ID:
10511019
Author(s) / Creator(s):
;
Publisher / Repository:
Chemistry Europe
Date Published:
Journal Name:
ChemPhysChem
Volume:
24
Issue:
1
ISSN:
1439-4235
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We reply to the comment by S. Pan and G. Frenking who challenged our interpretation of the Na:→BH3dative bond in the recently synthesized NaBH3cluster. Our conclusion remains the same as that in our original paper (https://doi.org/10.1002/anie.201907089andhttps://doi.org/10.1002/ange.201907089). This conclusion is additionally supported by the energetic pathways and NBO charges calculated at UCCSD and CASMP2(4,4) levels of theory. We also discussed the suitability of the Laplacian of electron density (QTAIM) and Adaptive Natural Density Partitioning (AdNDP) method for bond type assignment. It seems that AdNDP yields more sensible results. This discussion reveals that the complex realm of bonding is full of semantic inconsistencies, and we invite experimentalists and theoreticians to elaborate this topic and find solutions incorporating different views on the dative bond. 
    more » « less
  2. Abstract We compared the performance of DREAM3D simulations in reproducing the long‐term radiation belt dynamics observed by Van Allen Probes over the entire year of 2017 with various boundary conditions (BCs) and model inputs. Specifically, we investigated the effects of three different outer boundary conditions, two different low‐energy boundary conditions for seed electrons, four different radial diffusion (RD) coefficients (DLL), four hiss wave models, and two chorus wave models from the literature. Using the outer boundary condition driven by GOES data, our benchmark simulation generally well reproduces the observed radiation belt dynamics insideL* = 6, with a better model performance at lowerμthan higherμ, whereμis the first adiabatic invariant. By varying the boundary conditions and inputs, we find that: (a) The data‐driven outer boundary condition is critical to the model performance, while adding in the data‐driven seed population doesn't further improve the performance. (b) The model shows comparable performance withDLLfrom Brautigam and Albert (2000,https://doi.org/10.1029/1999ja900344), Ozeke et al. (2014,https://doi.org/10.1002/2013ja019204), and Liu et al. (2016,https://doi.org/10.1002/2015gl067398), while withDLLfrom Ali et al. (2016,https://doi.org/10.1002/2016ja023002) the model shows less RD compared to data. (c) The model performance is similar with data‐based hiss models, but the results show faster loss is still needed inside the plasmasphere. (d) The model performs similarly with the two different chorus models, but better capturing the electron enhancement at higherμusing the Wang et al. (2019,https://doi.org/10.1029/2018ja026183) model due to its stronger wave power, since local heating for higher energy electrons is under‐reproduced in the current model. 
    more » « less
  3. Molecular Ag(II) complexes are superoxidizing photoredox catalysts capable of generating radicals from redox-reticent substrates. In this work, we exploited the electrophilicity of Ag(II) centers in [Ag(bpy)2(TFA)][OTf] and Ag(bpy)(TFA)2(bpy, 2,2′-bipyridine; OTf, CF3SO3) complexes to activate trifluoroacetate (TFA) by visible light–induced homolysis. The resulting trifluoromethyl radicals may react with a variety of arenes to forge C(sp2)–CF3bonds. This methodology is general and extends to other perfluoroalkyl carboxylates of higher chain length (RFCO2; RF, CF2CF3or CF2CF2CF3). The photoredox reaction may be rendered electrophotocatalytic by regenerating the Ag(II) complexes electrochemically during irradiation. Electrophotocatalytic perfluoroalkylation of arenes at turnover numbers exceeding 20 was accomplished by photoexciting the Ag(II)–TFA ligand-to-metal charge transfer (LMCT) state, followed by electrochemical reoxidation of the Ag(I) photoproduct back to the Ag(II) photoreactant. 
    more » « less
  4. Abstract The polarFregion ionosphere frequently exhibits sporadic variability (e.g., Meek, 1949,https://doi.org/10.1029/JZ054i004p00339; Hill, 1963,https://doi.org/10.1175/1520‐0469(1963)020<0492:SEOLII>2.0.CO;2). Recent satellite data analysis (Noja et al., 2013,https://doi.org/10.1002/rds.20033; Chartier et al., 2018,https://doi.org/10.1002/2017JA024811) showed that the high‐latitudeFregion ionosphere exhibits sporadic enhancements more frequently in January than in July in both the northern and southern hemispheres. The same pattern has been seen in statistics of the degradation and total loss of GPS service onboard low‐Earth orbit satellites (Xiong et al. 2018,https://doi.org/10.5194/angeo‐36‐679‐2018). Here, we confirm the existence of this annual pattern using ground GPS‐based images of TEC from the MIDAS algorithm. Images covering January and July 2014 confirm that the high‐latitude (>70 MLAT)Fregion exhibits a substantially larger range of values in January than in July in both the northern and southern hemispheres. The range of TEC values observed in the polar caps is 38–57 TECU (north‐south) in January versus 25–37 TECU in July. First‐principle modeling using SAMI3 reproduces this pattern, and indicates that it is caused by an asymmetry in plasma levels (30% higher in January than in July across both polar caps), as well as 17% longer O+plasma lifetimes in northern hemisphere winter, compared to southern hemisphere winter. 
    more » « less
  5. Abstract Faunal analog reconstructions suggest that Last Interglacial (MIS 5e) sea surface temperatures were cooler around Bermuda and in the Caribbean than modern climate. Here we describe new and revised clumped isotope measurements ofCittarium picafossil shells supporting previous findings of cooler than modern temperatures in Bermuda during the Last Interglacial. We resolve temperature and δ18Owdifferences between two closely located and apparently coeval sites described in Winkelstern et al. (2017),https://doi.org/10.1002/2016pa003014through reprocessing raw isotopic data with the updated Brand/IUPAC parameters. New subannual‐resolution clumped isotope data reveal large variations in δ18Owout of phase with seasonal temperature changes (i.e., lower δ18Owvalues in winter). Supported by modern δ18Owmeasurements identifying similar processes occurring today, we suggest past variations in coastal δ18Owwere driven by seasonally variable freshwater discharge from a subterranean aquifer beneath the island. Taken together, our results emphasize the importance of δ18Owin controlling carbonate δ18O, and suggest that typical assumptions of constant δ18Owshould be made cautiously in nearshore settings and can contribute to less accurate reconstructions of paleotemperature. 
    more » « less