skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Comparing costs and climate impacts of various electric vehicle charging systems across the United States
Abstract

The seamless adoption of electric vehicles (EVs) in the United States necessitates the development of extensive and effective charging infrastructure. Various charging systems have been proposed, including Direct Current Fast Charging, Battery Swapping, and Dynamic Wireless Power Transfer. While many studies have evaluated the charging costs and greenhouse gas (GHG) intensity of EVs, a comprehensive analysis comparing these systems and their implications across vehicle categories remains unexplored. This study compares the total cost of ownership (TCO) and GHG-intensity of EVs using these charging systems. Based on nationwide infrastructure deployment simulations, the change to TCO from adopting EVs varies by scenario, vehicle category, and location, with local fuel prices, electricity prices, and traffic volumes dramatically impacting results. Further, EV GHG-intensity depends on local electricity mixes and infrastructure utilizations. This research highlights the responsiveness of EV benefits resulting from technology advancements, deployment decisions, and policymaking.

 
more » « less
PAR ID:
10511335
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Electric vehicle (EV) charging infrastructure buildout is a major greenhouse gas (GHG) mitigation strategy among governments and municipalities. In the United States, where petroleum-based transportation is the largest single source of GHG emissions, the Infrastructure Investment and Jobs Act of 2021 will support building a national network of 500 000 EV charging units. While the climate benefits of driving electric are well established, the potential embodied climate impacts of building out the charging infrastructure are relatively unexplored. Furthermore, ‘charging infrastructure’ tends to be conceptualized in terms of plugs and stations, leaving out the electrical and communications systems that will be required to support decarbonized and efficient charging. In this study, we present an EV charging system (EVCS) model that describes the material and operational components required for charging and forecasts the scale-up of these components based on EV market share scenarios out to 2050. We develop a methodology for measuring GHG emissions embodied in the buildout of EVCS and incurred during operation of the EVCS, including vehicle recharging, and we demonstrate this model using a case study of Georgia (USA). We find that cumulative GHG emissions from EVCS buildout and use are negligible, at less than 1% of cumulative emissions from personal light duty vehicle travel (including EV recharging and conventional combustion vehicle driving). If an accelerated EVCS buildout were to stimulate a faster transition of the vehicle fleet, the emissions reduction of electrification will far outweigh emissions embodied in EVCS components, even assuming relatively high carbon inputs prior to decarbonization.

     
    more » « less
  2. In metropolitan areas with heavy transit demands, electric vehicles (EVs) are expected to be continuously driving without recharging downtime. Wireless Power Transfer (WPT) provides a promising solution for in-motion EV charging. Nevertheless, previous works are not directly applicable for the deployment of in-motion wireless chargers due to their different charging characteristics. The challenge of deploying in-motion wireless chargers to support the continuous driving of EVs in a metropolitan road network with the minimum cost remains unsolved. We propose CatCharger to tackle this challenge. By analyzing a metropolitan-scale dataset, we found that traffic attributes like vehicle passing speed, daily visit frequency at intersections (i.e., landmarks) and their variances are diverse, and these attributes are critical to in-motion wireless charging performance. Driven by these observations, we first group landmarks with similar attribute values using the entropy minimization clustering method, and select candidate landmarks from the groups with suitable attribute values. Then, we use the Kernel Density Estimator (KDE) to deduce the expected vehicle residual energy at each candidate landmark and consider EV drivers’ routing choice behavior in charger deployment. Finally, we determine the deployment locations by formulating and solving a multi-objective optimization problem, which maximizes vehicle traffic flow at charger deployment positions while guaranteeing the continuous driving of EVs at each landmark. Trace-driven experiments demonstrate that CatCharger increases the ratio of driving EVs at the end of a day by 12.5% under the same deployment cost. 
    more » « less
  3. Charging infrastructure is the coupling link between power and transportation networks, thus determining charging station siting is necessary for planning of power and transportation systems. While previous works have either optimized for charging station siting given historic travel behavior, or optimized fleet routing and charging given an assumed placement of the stations, this paper introduces a linear program that optimizes for station siting and macroscopic fleet operations in a joint fashion. Given an electricity retail rate and a set of travel demand requests, the optimization minimizes total cost for an autonomous EV fleet comprising of travel costs, station procurement costs, fleet procurement costs, and electricity costs, including demand charges. Specifically, the optimization returns the number of charging plugs for each charging rate (e.g., Level 2, DC fast charging) at each candidate location, as well as the optimal routing and charging of the fleet. From a case-study of an electric vehicle fleet operating in San Francisco, our results show that, albeit with range limitations, small EVs with low procurement costs and high energy efficiencies are the most cost-effective in terms of total ownership costs. Furthermore, the optimal siting of charging stations is more spatially distributed than the current siting of stations, consisting mainly of high-power Level 2 AC stations (16.8 kW) with a small share of DC fast charging stations and no standard 7.7kW Level 2 stations. Optimal siting reduces the total costs, empty vehicle travel, and peak charging load by up to 10%. 
    more » « less
  4. The transition to Electric Vehicles (EVs) for reducing urban greenhouse gas emissions is hindered by the lack of public charging infrastructure, particularly fast-charging stations. Given that electric vehicle fast charging stations (EVFCS) can burden the electricity grid, it is crucial for EVFCS to adopt sustainable energy supply methods while accommodating the growing demands of EVs. Despite recent research efforts to optimize the placement of renewable-powered EV charging stations, current planning methods face challenges when applied to a complex city scale and integrating with renewable energy resources. This study thus introduces a robust decision-making model for optimal EVFCS placement planning integrated with solar power supply in a large and complex urban environment (e.g., Chicago), utilizing an advantage actor-critic (A2C) deep reinforcement learning (DRL) approach. The model balances traffic demand with energy supply, strategically placing charging stations in areas with high traffic density and solar potential. As a result, the model is used to optimally place 1,000 charging stations with a random starting search approach, achieving total reward values of 74.30 %, and estimated the capacities of potential EVFCS. This study can inform the identification of suitable locations to advance the microgrid-based charging infrastructure systems in large urban environments. 
    more » « less
  5. Abstract

    Electric vehicle (EV) adoption promises potential air pollutant and greenhouse gas (GHG) reduction co‐benefits. As such, China has aggressively incentivized EV adoption, however much remains unknown with regard to EVs’ mitigation potential, including optimal vehicle type prioritization, power generation contingencies, effects of Clean Air regulations, and the ability of EVs to reduce acute impacts of extreme air quality events. Here, we present a suite of scenarios with a chemistry transport model that assess the potential co‐benefits of EVs during an extreme winter air quality event. We find that regardless of power generation source, heavy‐duty vehicle (HDV) electrification consistently improves air quality in terms of NO2and fine particulate matter (PM2.5), potentially avoiding 562 deaths due to acute pollutant exposure during the infamous January 2013 pollution episode (∼1% of total premature mortality). However, HDV electrification does not reduce GHG emissions without enhanced emission‐free electricity generation. In contrast, due to differing emission profiles, light‐duty vehicle (LDV) electrification in China consistently reduces GHG emissions (∼2 Mt CO2), but results in fewer air quality and human health improvements (145 avoided deaths). The calculated economic impacts for human health endpoints and CO2reductions for LDV electrification are nearly double those of HDV electrification in present‐day (155M vs. 87M US$), but are within ∼25% when enhanced emission‐free generation is used to power them. Overall, we find only a modest benefit for EVs to ameliorate severe wintertime pollution events, and that continued emission reductions in the power generation sector will have the greatest human health and economic benefits.

     
    more » « less