skip to main content

This content will become publicly available on May 8, 2025

Title: Long-chain plant wax n-alkane hydrogen isotopic evidence for increased Little Ice Age aridity in the midcontinental United States
We compare hydrogen isotopic measurements of long-chain leaf-wax n-alkanes (2Hw; C27, C29, and C31) from Martin Lake, IN, United States of America (USA), with a calcite-based reconstruction of the oxygen isotopic composition of precipitation (18Op) from the same lake. We observe stable and high 2Hw during the Common Era (last 2000 years), which we interpret as growing-season precipitation originating mainly from the Gulf of Mexico and Atlantic. During the Little Ice Age (LIA; 1200-1850 CE), 2Hw values increased by 3-8 ‰, concomitant with a significant decrease in 18Op values by up to 12.5 ‰. Multiple proxy records for this time indicate persistent growing-season drought. We interpret these relatively high 2Hw values, as compared to the 18Op values, as a signal of low relative humidity that resulted in an 2H enrichment in plant source water resulting in high 2H values through enhanced plant water and/or soil evaporation. These results support the occurrence of low humidity conditions during the LIA in the midcontinental USA that also contributed to the marked decline of regional pre-Columbian Mississippian populations.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of Paleolimnology
Date Published:
Journal Name:
Journal of Paleolimnology
Subject(s) / Keyword(s):
Hydroclimate Paleoclimate Common Era Medieval Climate Anomaly Current Warm Period
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent studies have improved our understanding of how karst hydrology impacts variability in modern cave drip water δ18O values and the resultant calcite δ18O values of speleothem paleoclimate records. Monitoring of cave drip water isotope values reveals that flow path controls the differences in drip site values in many caves worldwide. We present a case study of three caves from the central Peruvian Andes where isotopic differences between sites are informed by monitoring data. Relative humidity at Huagapo and Pacupahuain caves is 100% year-round with no fluctuations, so any isotopic fractionation of waters must occur in the vadose zone or epikarst. Precipitation isotope data from the 2022-2023 year show differences with elevation, where annual mean precipitation at 3600 masl (meters above sea level) is, on average, 2‰ greater than precipitation at 4100 masl. Cave drip water was sampled four times (April, June, and November 2022, and June 2023). Average drip water δ18O values were lowest at the high elevation (4004 masl) cave of Antipayargunan -14.7 ± 2.5‰; similar values were found at the lowest elevation (3600 masl) cave of Huagapo -14.5 ± 1.2‰. Pacupahuain cave had the highest values with an average of -13.9 ± 1.7‰. The higher values at Pacupahuain Cave (3800 masl) may be attributed to higher evaporation due to vadose zone residence time, a lower average recharge elevation for this catchment and/or potential contribution from a sinkhole lake (Lago Gallerina) above the cave. Huagapo Cave is large, and sampling sites over 1 km in distance show that the δ18O value of drip water increases by 0.5‰ with increasing distance from the cave entrance. Drip counting sensor data and a continuous SYP autosampler at Pacupahuain Cave provide a time series showing that drip rate peaks during the monsoon season. More specifically, the data show a maximum of 2 ‰ difference in drip water at the autosampler site between the end of the wet season in May and the middle of the dry season in August – at which point drips cease for six months. Seasonal recharge dominates most drip water sites, while drip counters show evidence for fracture and diffuse flow-dominated drip sites. These data suggest that, similar to other cave sites, flow path is important for intra-cave differences in drip water isotope values. However, we find that karst hydrology plays a more dominant role between caves. 
    more » « less
  2. Abstract

    Arctic precipitation is predicted to increase this century. Records of past precipitation seasonality provide baselines for a mechanistic understanding of the dynamics controlling Arctic precipitation. We present an approach to reconstruct Arctic precipitation seasonality using stable hydrogen isotopes (δ2H) of aquatic plant waxes in neighboring lakes with contrasting water residence times and present a case study of this approach in two lakes on western Greenland. Residence time calculations suggest that growing season lake water δ2H in one lake reflects summer precipitation δ2H, while the other reflects amount‐weighted annual precipitation δ2H and evaporative enrichment. Aquatic plant wax δ2H in the “summer lake” is relatively constant throughout the Holocene, perhaps reflecting competing effects of local summer warmth and increased distal moisture transport due to a strengthened latitudinal temperature gradient. In contrast, aquatic plant wax δ2H in the “mean annual lake” is 100‰2H depleted from 6 to 4 ka relative to the beginning and end of the record. Because there are relatively minor changes in summer precipitation δ2H, we interpret the 100‰2H depletion in mean annual precipitation to reflect an increase in winter precipitation amount, likely accompanied by changes in winter precipitation δ2H and decreased evaporative enrichment. Thus, unlike the “summer lake,” the “mean annual lake” records changes in winter precipitation. This dual‐lake approach may be applied to reconstruct past changes in precipitation seasonality at sites with strong precipitation isotope seasonality and minimal lake water evaporative enrichment.

    more » « less
  3. Paleo water isotope records can elucidate how the Arctic water cycle responded to past climate changes. We analyze the hydrogen isotope composition (δ2H) of plant‐derived n‐alkanoic acids (waxes) from Lake Qaupat, Baffin Island, Nunavut, Canada, to assess moisture sources and seasonality during the past 5.8 ka. We compare this record to a sedimentary ancient DNA (sedaDNA)‐inferred vascular plant record from the same lake, aiming to overcome the uncertainty of plant community impacts on leaf waxes. As the sedaDNA record reveals a stable plant community after the colonization of Betula sp. at 6.1 ka, we interpret plant wax δ2H values to reflect climate, specifically mean annual precipitation δ2H. However, the distributions of n‐alkanoic acid homologs suggest that aquatic mosses, which are not represented in the sedaDNA record, may become more abundant towards the present. Therefore, we cannot exclude the possibility that changes in the plant community cause changes in the plant wax δ2H record, particularly long‐chain waxes, which become less abundant through this record. We find that Lake Qaupat mid‐chain plant wax δ2H is enriched coincident with high Labrador Sea summer surface temperature, which suggests that local moisture sources in summer and early autumn have the greatest impact on precipitation isotopes in this region. 
    more » « less
  4. Abstract

    In snowmelt‐driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high‐relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow‐derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late‐winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid‐summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.

    more » « less
  5. Abstract

    Floods and droughts in the Mississippi River basin are perennial hazards that cause severe economic disruption. Here we develop and analyze a new lipid biomarker record from Horseshoe Lake (Illinois, USA) to evaluate the climatic conditions associated with hydroclimatic extremes that occurred in this region over the last 1,800 years. We present geochemical proxy evidence of temperature and moisture variability using branched glycerol dialkyl glycerol tetraethers (brGDGTs) and plant leaf wax hydrogen isotopic composition (δ2Hwax) and use isotope‐enabled coupled model simulations to diagnose the controls on these proxies. Our data show pronounced warming during the Medieval era (CE 1000–1,600) that corresponds to midcontinental megadroughts. Severe floods on the upper Mississippi River basin also occurred during the Medieval era and correspond to periods of enhanced warm‐season moisture. Our findings imply that projected increases in temperature and warm‐season precipitation could enhance both drought and flood hazards in this economically vital region.

    more » « less