skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Salt-Dependent Phase Re-entry of Weak Polyelectrolyte Complexes: from Associative to Segregative Liquid–Liquid Phase Separation
A high-salt phase-separation re-entry is observed in mixtures of poly (diallyldimethyl ammonium chloride) (PDADMAC), a strong polycation, and poly (acrylic acid) (PAA), a partially charged polyanion, within the pH range 4.7 to 5.3. This intriguing phenomenon exclusively occurs at salt concentrations exceeding the critical salt concentration required for dissolving the coacervate formed at low salt concentrations, here named the “Upper Critical Salt Concentration” (UCSaC), and at monomer concentrations exceeding 0.1M for each polymer. The transition from associative phase separation at low salt concentration, to a single solution, and ultimately to segregative separation at high salt concentration called the Lower Critical Salt Concentration (LCSaC), arises from the interplay between electrostatic interactions and the hydrophobicity of neutral PAA monomers in a high-salt solvent. To explain this transition, we use a theory combining short-range ion pairing and counterion condensation with long-range electrostatics using the random phase approximation (RPA), and with hydrophobic interactions between PAA neutral monomers and water. The latter is modeled through a Flory-Huggins χ parameter of around 0.6. Literature observations of a continuous transition from associative to segregative phase transition with increasing salt concentration, without a homogeneous single-phase solution at intermediate salt concentration, are also predicted and discussed.  more » « less
Award ID(s):
2100513
PAR ID:
10511477
Author(s) / Creator(s):
; ; ; ;
Corporate Creator(s):
Editor(s):
Hillmyer, Marc A
Publisher / Repository:
Macromolecules
Date Published:
Journal Name:
Macromolecules
Edition / Version:
1
Volume:
56
Issue:
19
ISSN:
0024-9297
Page Range / eLocation ID:
7909 to 7920
Subject(s) / Keyword(s):
polyelectrolytes phase behavior electrostatics
Format(s):
Medium: X Size: 1.1 MB Other: pdf
Size(s):
1.1 MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Oppositely-charged polymers can undergo an associative phase separation process known as complex coacervation, which is driven by the electrostatic attraction between the two polymer species. This driving force for phase separation can be harnessed to drive self-assembly, via pairs of block copolyelectrolytes with opposite charge and thus favorable coulombic interactions. There are few predictions of coacervate self-assembly phase behavior due to the wide variety of molecular and environmental parameters, along with fundamental theoretical challenges. In this paper, we use recent advances in coacervate theory to predict the solution-phase assembly of diblock polyelectrolyte pairs for a number of molecular design parameters (charged block fraction, polymer length). Phase diagrams show that self-assembly occurs at high polymer, low salt concentrations for a range of charge block fractions. We show that we qualitatively obtain limiting results seen in the experimental literature, including the emergence of a high polymer-fraction reentrant transition that gives rise to a self-compatibilized homopolymer coacervate behavior at the limit of high charge block fraction. In intermediate charge block fractions, we draw an analogy between the role of salt concentration in coacervation-driven assembly and the role of temperature in χ -driven assembly. We also explore salt partitioning between microphase separated domains in block copolyelectrolytes, with parallels to homopolyelectrolyte coacervation. 
    more » « less
  2. null (Ed.)
    When oppositely charged polyelectrolytes mix in an aqueous solution, associative phase separation gives rise to coacervates. Experiments reveal the phase diagram for such coacervates, and determine the impact of charge density, chain length and added salt. Simulations often use hybrid MC-MD methods to produce such phase diagrams, in support of experimental observations. We propose an idealized model and a simple simulation technique to investigate coacervate phase behavior. We model coacervate systems by charged bead-spring chains and counterions with short-range repulsions, of size equal to the Bjerrum length. We determine phase behavior by equilibrating a slab of concentrated coacervate with respect to swelling into a dilute phase of counterions. At salt concentrations below the critical point, the counterion concentration in the coacervate and dilute phases are nearly the same. At high salt concentrations, we find a one-phase region. Along the phase boundary, the total concentration of beads in the coacervate phase is nearly constant, corresponding to a “Bjerrum liquid''. This result can be extended to experimental phase diagrams by assigning appropriate volumes to monomers and salts. 
    more » « less
  3. The phase behavior of polyelectrolyte complexes and coacervates (PECs) at low salt concentrations has been well characterized, but their behavior at concentrations well above the binodal is not well understood. Here, we investigate the phase behavior of stoichiometric poly(styrene sulfonate)/poly(diallyldimethylammonium) mixtures at high salt and high polymer concentrations. Samples were prepared by direct mixing of PSS/PDADMA PECs, water, and salt (KBr). Phase separation was observed at salt concentrations approximately 1 M above the binodal. Characterization by thermogravimetric analysis, FTIR, and NMR revealed that both phases contained significant amounts of polymer, and that the polymer-rich phase was enriched in PSS, while the polymer-poor phase was enriched in PDADMA. These results suggest that high salt concentrations drive salting out of the more hydrophobic polyelectrolyte (PSS), consistent with behavior observed in weak polyelectrolyte systems. Interestingly, at the highest salt and polymer concentrations studied, the polymer-rich phase contained both PSS and PDADMA, suggesting that high salt concentrations can drive salting out of partially-neutralized complexes as well. Characterization of the behavior of PECs in the high concentration limit appears to be a fruitful avenue for deepening fundamental understanding of the molecular-scale factors driving phase separation in these systems. 
    more » « less
  4. null (Ed.)
    Water + elastin-like polypeptides (ELPs) exhibit a transition temperature below which the chains transform from collapsed to expanded states, reminiscent of the cold denaturation of proteins. This conformational change coincides with liquid–liquid phase separation. A statistical-thermodynamics theory is used to model the fluid-phase behavior of ELPs in aqueous solution and to extrapolate the behavior at ambient conditions over a range of pressures. At low pressures, closed-loop liquid–liquid equilibrium phase behavior is found, which is consistent with that of other hydrogen-bonding solvent + polymer mixtures. At pressures evocative of deep-sea conditions, liquid–liquid immiscibility bounded by two lower critical solution temperatures (LCSTs) is predicted. As pressure is increased further, the system exhibits two separate regions of closed-loop of liquid–liquid equilibrium (LLE). The observation of bimodal LCSTs and two re-entrant LLE regions herald a new type of binary global phase diagram: Type XII. At high-ELP concentrations the predicted phase diagram resembles a protein pressure denaturation diagram; possible “molten-globule”-like states are observed at low concentration. 
    more » « less
  5. Abstract Intrinsically disordered proteins rich in cationic amino acid groups can undergo Liquid-Liquid Phase Separation (LLPS) in the presence of charge-balancing anionic counterparts. Arginine and Lysine are the two most prevalent cationic amino acids in proteins that undergo LLPS, with arginine-rich proteins observed to undergo LLPS more readily than lysine-rich proteins, a feature commonly attributed to arginine’s ability to form stronger cation-π interactions with aromatic groups. Here, we show that arginine’s ability to promote LLPS is independent of the presence of aromatic partners, and that arginine-rich peptides, but not lysine-rich peptides, display re-entrant phase behavior at high salt concentrations. We further demonstrate that the hydrophobicity of arginine is the determining factor giving rise to the reentrant phase behavior and tunable viscoelastic properties of the dense LLPS phase. Controlling arginine-induced reentrant LLPS behavior using temperature and salt concentration opens avenues for the bioengineering of stress-triggered biological phenomena and drug delivery systems. 
    more » « less