Lithium-ion batteries (LIBs) are widely used energy storage devices, and sodium-ion batteries (SIBs) are promising alternatives to LIBs because sodium is of high abundance and low toxicity. However, a dominant obstacle for the advancement of LIBs and SIBs is the lack of high capacity anode materials, especially for SIBs. Here, we propose that three characteristics, namely appropriate pore size, suitable pore distribution, and an entirely planar topology, can help achieve ultrahigh capacity 2D anode materials. Under such guidelines, we constructed a B 7 P 2 monolayer, and investigated its potential as a LIB/SIB anode material by means of density functional theory (DFT) computations. Encouragingly, the B 7 P 2 monolayer possesses all the essential properties of a high-capacity LIB/SIB anode: its high stability ensures the experimental feasibility of synthesis, its metallicity does not change upon Li/Na adsorption and desorption, the Li/Na can well diffuse on the surface, and the open-circuit voltage is in a good range. Most importantly, the B 7 P 2 monolayer has a high storage capacity of 3117 mA h g −1 for both LIBs and SIBs, and this capacity value ranks among the highest for 2D SIB anode materials. This study offers us some good clues to design/discover other anode materials with ultrahigh capacities, and serves us another vivid example that (implicit and hidden) trends/rules in the literature can guide us in the design of functional materials more efficiently.
more »
« less
Understanding High-Voltage Behavior of Sodium-Ion Battery Cathode Materials Using Synchrotron X-ray and Neutron Techniques: A Review
Despite substantial research efforts in developing high-voltage sodium-ion batteries (SIBs) as high-energy-density alternatives to complement lithium-ion-based energy storage technologies, the lifetime of high-voltage SIBs is still associated with many fundamental scientific questions. In particular, the structure phase transition, oxygen loss, and cathode–electrolyte interphase (CEI) decay are intensely discussed in the field. Synchrotron X-ray and neutron scattering characterization techniques offer unique capabilities for investigating the complex structure and dynamics of high-voltage cathode behavior. In this review, to accelerate the development of stable high-voltage SIBs, we provide a comprehensive and thorough overview of the use of synchrotron X-ray and neutron scattering in studying SIB cathode materials with an emphasis on high-voltage layered transition metal oxide cathodes. We then discuss these characterizations in relation to polyanion-type cathodes, Prussian blue analogues, and organic cathode materials. Finally, future directions of these techniques in high-voltage SIB research are proposed, including CEI studies for polyanion-type cathodes and the extension of neutron scattering techniques, as well as the integration of morphology and phase characterizations.
more »
« less
- Award ID(s):
- 2301719
- PAR ID:
- 10511565
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Batteries
- Volume:
- 9
- Issue:
- 9
- ISSN:
- 2313-0105
- Page Range / eLocation ID:
- 461
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Developing suitable cathodes of sodium‐ion batteries (SIBs) with robust electrochemical performance and industrial application potential is crucial for the commercialization of large‐scale stationary energy storage systems. Layered sodium transition metal oxides, NaxTmO2(Tm representing transition metal), possessing considerable specific capacity, high operational potential, facile synthesis, cost‐effectiveness, and environmentally friendly characteristics, stand out as viable cathode materials. Nevertheless, the prevailing challenge of air‐induced degradation in most NaxTmO2significantly increases costs associated with production, storage, and transportation, coupled with a rapid decay in reversible capacity. This inherent obstacle inevitably impedes the advancement and commercial viability of SIBs. To address this challenge, it is essential to decode the chemistry of degradation caused by air exposure and develop protective strategies accordingly. In this review, a comprehensive and in‐depth understanding of the fundamental mechanisms associated with air‐induced degradation is provided. Additionally, the current state‐of‐the‐art effective protective strategies are explored and discuss the corresponding sustainability and scalability features. This review concludes with an outlook on present and future research directions concerning air‐stable cathode materials, offering potential avenues for upcoming investigations in advancing alkali metal layered oxides.more » « less
-
Abstract Nickel‐rich layered materials LiNi1‐x‐yMnxCoyO2are promising candidates for high‐energy‐density lithium‐ion battery cathodes. Unfortunately, they suffer from capacity fading upon cycling, especially with high‐voltage charging. It is critical to have a mechanistic understanding of such fade. Herein, synchrotron‐based techniques (including scattering, spectroscopy, and microcopy) and finite element analysis are utilized to understand the LiNi0.6Mn0.2Co0.2O2material from structural, chemical, morphological, and mechanical points of view. The lattice structural changes are shown to be relatively reversible during cycling, even when 4.9 V charging is applied. However, local disorder and strain are induced by high‐voltage charging. Nano‐resolution 3D transmission X‐ray microscopy data analyzed by machine learning methodology reveal that high‐voltage charging induced significant oxidation state inhomogeneities in the cycled particles. Regions at the surface have a rock salt–type structure with lower oxidation state and build up the impedance, while regions with higher oxidization state are scattered in the bulk and are likely deactivated during cycling. In addition, the development of micro‐cracks is highly dependent on the pristine state morphology and cycling conditions. Hollow particles seem to be more robust against stress‐induced cracks than the solid ones, suggesting that morphology engineering can be effective in mitigating the crack problem in these materials.more » « less
-
Abstract A new concentrated ternary salt ether‐based electrolyte enables stable cycling of lithium metal battery (LMB) cells with high‐mass‐loading (13.8 mg cm−2, 2.5 mAh cm−2) NMC622 (LiNi0.6Co0.2Mn0.2O2) cathodes and 50 μm Li anodes. Termed “CETHER‐3,” this electrolyte is based on LiTFSI, LiDFOB, and LiBF4with 5 vol% fluorinated ethylene carbonate in 1,2‐dimethoxyethane. Commercial carbonate and state‐of‐the‐art binary salt ether electrolytes were also tested as baselines. With CETHER‐3, the electrochemical performance of the full‐cell battery is among the most favorably reported in terms of high‐voltage cycling stability. For example, LiNixMnyCo1–x–yO2(NMC)‐Li metal cells retain 80% capacity at 430 cycles with a 4.4 V cut‐off and 83% capacity at 100 cycles with a 4.5 V cut‐off (charge at C/5, discharge at C/2). According to simulation by density functional theory and molecular dynamics, this favorable performance is an outcome of enhanced coordination between Li+and the solvent/salt molecules. Combining advanced microscopy (high‐resolution transmission electron microscopy, scanning electron microscopy) and surface science (X‐ray photoelectron spectroscopy, time‐of‐fight secondary ion mass spectroscopy, Fourier‐transform infrared spectroscopy, Raman spectroscopy), it is demonstrated that a thinner and more stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) are formed. The CEI is rich in lithium sulfide (Li2SO3), while the SEI is rich in Li3N and LiF. During cycling, the CEI/SEI suppresses both the deleterious transformation of the cathode R‐3m layered near‐surface structure into disordered rock salt and the growth of lithium metal dendrites.more » « less
-
Cost-effective production of low cobalt Li-ion battery (LIB) cathode materials is of great importance to the electric vehicle (EV) industry to achieve a zero-carbon economy. Among the various low cobalt cathodes, Ni-rich lithium nickel cobalt manganese oxide (NCM/NMC)-based layered materials are commonly used in EVs and are attracting more attention of the scientific community due to their high specific capacity and energy density. Various synthesis routes are already established to produce Ni-rich NCM cathodes with uniform particle size distribution and high tap density. Continuous production of highly pure Ni-rich cathode materials with uniformity in inter/intra-particle compositional distribution is critically required. On the other hand, cation mixing, particle cracking, and parasitic side reactions at higher voltage and temperature are some of the primary challenges of working with Ni-rich NCM cathodes. During the past five years, several advanced modification strategies such as coating, doping, core–shell, gradient structure and single crystal growth have been explored to improve the NCM cathode performance in terms of specific capacity, rate-capability and cycling stability. The scientific advancements in the field of Ni-rich NCM cathodes in terms of manufacturing processes, material challenges, modification techniques, and also the future research direction of LIB research are critically reviewed in this article.more » « less