skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A giant thin stellar stream in the Coma Galaxy Cluster
The study of dynamically cold stellar streams reveals information about the gravitational potential where they reside and provides important constraints on the properties of dark matter. However, the intrinsic faintness of these streams makes their detection beyond Local environments highly challenging. Here, we report the detection of an extremely faint stellar stream (μg, max= 29.5 mag arcsec−2) with an extraordinarily coherent and thin morphology in the Coma Galaxy Cluster. This Giant Coma Stream spans ∼510 kpc in length and appears as a free-floating structure located at a projected distance of 0.8 Mpc from the center of Coma. We do not identify any potential galaxy remnant or core, and the stream structure appears featureless in our data. We interpret the Giant Coma Stream as being a recently accreted, tidally disrupting passive dwarf. Using the Illustris-TNG50 simulation, we identify a case with similar characteristics, showing that, although rare, these types of streams are predicted to exist in Λ-CDM. Our work unveils the presence of free-floating, extremely faint and thin stellar streams in galaxy clusters, widening the environmental context in which these objects are found ahead of their promising future application in the study of the properties of dark matter.  more » « less
Award ID(s):
1945310
PAR ID:
10511694
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Roman et al. 2023
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
679
ISSN:
0004-6361
Page Range / eLocation ID:
A157
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stellar streams from globular clusters (GCs) offer constraints on the nature of dark matter and have been used to explore the dark matter halo structure and substructure of our Galaxy. Detection of GC streams in other galaxies would broaden this endeavor to a cosmological context, yet no such streams have been detected to date. To enable such exploration, we develop the Hough Stream Spotter ( HSS ), and apply it to the Pan-Andromeda Archaeological Survey (PAndAS) photometric data of resolved stars in M31's stellar halo. We first demonstrate that our code can re-discover known dwarf streams in M31. We then use the HSS to blindly identify 27 linear GC stream-like structures in the PAndAS data. For each HSS GC stream candidate, we investigate the morphologies of the streams and the colors and magnitudes of all stars in the candidate streams. We find that the five most significant detections show a stronger signal along the red giant branch in color–magnitude diagrams than spurious non-stream detections. Lastly, we demonstrate that the HSS will easily detect globular cluster streams in future Nancy Grace Roman Space Telescope data of nearby galaxies. This has the potential to open up a new discovery space for GC stream studies, GC stream gap searches, and for GC stream-based constraints on the nature of dark matter. 
    more » « less
  2. Abstract We present deep optical imaging and photometry of four objects classified as “Almost-Dark” galaxies in the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) survey because of their gas-rich nature and extremely faint or missing optical emission in existing catalogs. They have Himasses of 107–109Mand distances of ∼9–100 Mpc. Observations with the WIYN 3.5 m telescope and One Degree Imager reveal faint stellar components with central surface brightnesses of ∼24–25 mag arcsec 2 in thegband. We also present the results of Hisynthesis observations with the Westerbork Synthesis Radio Telescope. These Almost-Dark galaxies have been identified as possible tidal dwarf galaxies (TDGs) based on their proximity to one or more massive galaxies. We demonstrate that AGC 229398 and AGC 333576 likely have the low dark matter content and large effective radii representative of TDGs. They are located much farther from their progenitors than previously studied TDGs, suggesting they are older and more evolved. AGC 219369 is likely dark matter dominated, while AGC 123216 has a dark matter content that is unusually high for a TDG, but low for a normal dwarf galaxy. We consider possible mechanisms for the formation of the TDG candidates such as a traditional major merger scenario and gas ejection from a high-velocity flyby. Blind Hisurveys like ALFALFA enable the detection of gas-rich, optically faint TDGs that can be overlooked in other surveys, thereby providing a more complete census of the low-mass galaxy population and an opportunity to study TDGs at a more advanced stage of their life cycle. 
    more » « less
  3. Abstract Stellar streams in the Milky Way are promising detectors of low-mass dark matter (DM) subhalos predicted by ΛCDM. Passing subhalos induce perturbations in streams that indicate the presence of the subhalos. Understanding how known DM-dominated satellites impact streams is a crucial step toward using stream perturbations to constrain the properties of dark perturbers. Here, we cross-match a Gaia Early Data Release 3 and SEGUE member catalog of the Cetus-Palca stream (CPS) with H3 for additional radial velocity measurements and fit the orbit of the CPS using this six-dimensional (6D) data. We demonstrate for the first time that the ultra-faint dwarf Segue 2 had a recent (77 ± 5 Myr ago) close flyby (within the stream's 2σwidth) with the CPS. This interaction enables constraints on Segue 2’s mass and density profile at larger radii ( O ( 1 ) kpc) than are probed by its stars ( O ( 10 ) pc). While Segue 2 is not expected to strongly affect the portion of the stream covered by our 6D data, we predict that if Segue 2’s mass within ∼ 6 kpc is 5 × 109M, the CPS's velocity dispersion will be ∼ 40 km s−1larger atϕ1 > 20° than atϕ1 < 0°. If no such heating is detected, Segue 2’s mass cannot exceed 109Mwithin ∼ 6 kpc. The proper motion distribution of the CPS near the impact site is mildly sensitive to the shape of Segue 2’s density profile. This study presents a critical test for frameworks designed to constrain properties of dark subhalos from stream perturbations. 
    more » « less
  4. Abstract Stellar streams from disrupted globular clusters are dynamically cold structures that are sensitive to perturbations from dark matter subhalos, allowing them in principle to trace the dark matter substructure in the Milky Way. We model, within the context of Λ cold dark matter, the likelihood of dark matter subhalos to produce a significant feature in a GD-1-like stream and analyze the properties of such subhalos. We generate many realizations of the subhalo population within a Milky Way mass host halo using the semianalytic codeSatGen, accounting for effects such as tidal stripping and dynamical friction. The subhalo distributions are combined with a GD-1-like stream model, and the impact of subhalos that pass close to the stream are modeled withGala. We find that subhalos with masses in the range 2 × 106M–108Mat the time of the stream–subhalo encounter, corresponding to masses of about 2 × 107M–109Mat the time of infall, are the likeliest to produce gaps in a GD-1-like stream. We find that gaps occur on average ∼3 times per realization of the host system. These gaps have typical widths of ∼(5–27)° and fractional underdensities of ∼(10–30)%, with larger gaps being caused by heavier subhalos. The stream–subhalo encounters responsible for these have impact parameters (0.1–1.5) kpc and relative velocities ∼(200–410) km s−1. We also investigate the effects of increasing the host-halo mass on the gap properties and formation rate. 
    more » « less
  5. Abstract We have discovered the stellar counterpart to the ALFALFA Virgo 7 cloud complex, which has been thought to be optically dark and nearly star-free since its discovery in 2007. This ∼190 kpc long chain of enormous atomic gas clouds (MHi∼ 109M) is embedded in the hot intracluster medium of the Virgo galaxy cluster but is isolated from any galaxy. Its faint, blue stellar counterpart, BC6, was identified in a visual search of archival optical and UV imaging. Follow-up observations with the Green Bank Telescope, Hobby–Eberly Telescope, and Hubble Space Telescope demonstrate that this faint counterpart is at the same velocity as the atomic gas, actively forming stars, and metal-rich (12 + (O/H) = 8.58 ± 0.25). We estimate its stellar mass to be only log ( M * / M ) 4.4 , making it one of the most gas-rich stellar systems known. Aside from its extraordinary gas content, the properties of BC6 are entirely consistent with those of a recently identified class of young, low-mass, isolated, and star-forming clouds in Virgo that appear to have formed via extreme ram pressure stripping events. We expand the existing discussion of the origin of this structure and suggest NGC 4522 as a likely candidate; however, the current evidence is not fully consistent with any of our proposed progenitor galaxies. We anticipate that other “dark” gas clouds in Virgo may have similarly faint, star-forming counterparts. We aim to identify these through the help of a citizen science search of the entire cluster. 
    more » « less