skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The progenitors of the intra-cluster light and intra-cluster globular clusters in galaxy groups and clusters
ABSTRACT We use the TNG50 from the IllustrisTNG suite of cosmological hydrodynamical simulation, complemented by a catalogue of tagged globular clusters, to investigate the properties and build up of two extended luminous components: the intra-cluster light (ICL) and the intra-cluster globular clusters (ICGCs). We select the 39 most massive groups and clusters in the box, spanning the range of virial masses $$5 \times 10^{12} \lt \rm M_{200}/\rm {\rm M}_{\odot } \lt 2 \times 10^{14}$$. We find good agreement between predictions from the simulations and current observational estimates of the fraction of mass in the ICL and its radial extension. The stellar mass of the ICL is only $$\sim 10~{{\ \rm per\ cent}}$$–20 per cent of the stellar mass in the central galaxy but encodes useful information on the assembly history of the group or cluster. About half the ICL in all our systems is brought in by galaxies in a narrow stellar mass range, M* = 1010–1011 M⊙. However, the contribution of low-mass galaxies (M* < 1010 M⊙) to the build up of the ICL varies broadly from system to system, $$\sim 5~{{\ \rm per\ cent}}-45~{{\ \rm per\ cent}}$$, a feature that might be recovered from the observable properties of the ICL at z = 0. At fixed virial mass, systems where the accretion of dwarf galaxies plays an important role have shallower metallicity profiles, less metal content, and a lower stellar mass in the ICL than systems where the main contributors are more massive galaxies. We show that intra-cluster GCs are also good tracers of this history, representing a valuable alternative when diffuse light is not detectable.  more » « less
Award ID(s):
1945310 2107993
PAR ID:
10511706
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Ahvazi et al. 2024a
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
529
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
4666 to 4680
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We study the role of group infall in the assembly and dynamics of galaxy clusters in ΛCDM. We select 10 clusters with virial mass M200 ∼ 1014 $$\rm M_\odot$$ from the cosmological hydrodynamical simulation Illustris and follow their galaxies with stellar mass M⋆ ≥ 1.5 × 108 $$\rm M_\odot$$. A median of $${\sim}38{{\ \rm per\ cent}}$$ of surviving galaxies at z = 0 is accreted as part of groups and did not infall directly from the field, albeit with significant cluster-to-cluster scatter. The evolution of these galaxy associations is quick, with observational signatures of their common origin eroding rapidly in 1–3 Gyr after infall. Substructure plays a dominant role in fostering the conditions for galaxy mergers to happen, even within the cluster environment. Integrated over time, we identify (per cluster) an average of 17 ± 9 mergers that occur in infalling galaxy associations, of which 7 ± 3 occur well within the virial radius of their cluster hosts. The number of mergers shows large dispersion from cluster to cluster, with our most massive system having 42 mergers above our mass cut-off. These mergers, which are typically gas rich for dwarfs and a combination of gas rich and gas poor for M⋆ ∼ 1011 $$\rm M_\odot$$, may contribute significantly within ΛCDM to the formation of specific morphologies, such as lenticulars (S0) and blue compact dwarfs in groups and clusters. 
    more » « less
  2. ABSTRACT Observational studies are finding stars believed to be relics of the earliest stages of hierarchical mass assembly of the Milky Way (i.e. proto-galaxy). In this work, we contextualize these findings by studying the masses, ages, spatial distributions, morphology, kinematics, and chemical compositions of proto-galaxy populations from the 13 Milky Way (MW)-mass galaxies from the FIRE-2 cosmological zoom-in simulations. Our findings indicate that proto-Milky Way populations: (i) can have a stellar mass range between 1 × 108 < M⋆ < 2 × 1010 [M⊙], a virial mass range between 3 × 1010 < M⋆ < 6 × 1011 [M⊙], and be as young as 8 ≲ Age ≲ 12.8 [Gyr] (1 ≲ z ≲ 6); (ii) are pre-dominantly centrally concentrated, with $$\sim 50~{{\ \rm per\ cent}}$$ of the stars contained within 5–10 kpc; (iii) on average show weak but systematic net rotation in the plane of the host’s disc at z = 0 (i.e. 0.25 ≲ 〈κ/κdisc〉 ≲ 0.8); (iv) present [α/Fe]-[Fe/H] compositions that overlap with the metal-poor tail of the host’s old disc; and (v) tend to assemble slightly earlier in Local Group-like environments than in systems in isolation. Interestingly, we find that $$\sim 60~{{\ \rm per\ cent}}$$ of the proto-Milky Way galaxies are comprised by 1 dominant system (1/5 ≲M⋆/M⋆, proto-MilkyWay≲ 4/5) and 4–5 lower mass systems (M⋆/M⋆, proto-MilkyWay≲ 1/10); the other $$\sim 40~{{\ \rm per\ cent}}$$ are comprised by 2 dominant systems and 3–4 lower mass systems. These massive/dominant proto-Milky Way fragments can be distinguished from the lower mass ones in chemical-kinematic samples, but appear (qualitatively) indistinguishable from one another. Our results could help observational studies disentangle if the Milky Way formed from one or two dominant systems. 
    more » « less
  3. ABSTRACT We model satellite quenching at z ∼ 1 by combining 14 massive (1013.8 < Mhalo/M⊙ < 1015) clusters at 0.8 < z < 1.3 from the GOGREEN and GCLASS surveys with accretion histories of 56 redshift-matched analogues from the IllustrisTNG simulation. Our fiducial model, which is parametrized by the satellite quenching time-scale (τquench), accounts for quenching in our simulated satellite population both at the time of infall by using the observed coeval field quenched fraction and after infall by tuning τquench to reproduce the observed satellite quenched fraction versus stellar mass trend. This model successfully reproduces the observed satellite quenched fraction as a function of stellar mass (by construction), projected cluster-centric radius, and redshift and is consistent with the observed field and cluster stellar mass functions at z ∼ 1. We find that the satellite quenching time-scale is mass dependent, in conflict with some previous studies at low and intermediate redshift. Over the stellar mass range probed (M⋆ > 1010 M⊙), we find that the satellite quenching time-scale decreases with increasing satellite stellar mass from ∼1.6 Gyr at 1010 M⊙ to ∼0.6−1 Gyr at 1011 M⊙ and is roughly consistent with the total cold gas (HI + H2) depletion time-scales at intermediate z, suggesting that starvation may be the dominant driver of environmental quenching at z < 2. Finally, while environmental mechanisms are relatively efficient at quenching massive satellites, we find that the majority ($$\sim 65{\!-\!}80{{\ \rm per\ cent}}$$) of ultra-massive satellites (M⋆ > 1011 M⊙) are quenched prior to infall. 
    more » « less
  4. ABSTRACT High-redshift ($$z\sim 1$$) galaxy clusters are the domain where environmental quenching mechanisms are expected to emerge as important factors in the evolution of the quiescent galaxy population. Uncovering these initially subtle effects requires exploring multiple dependencies of quenching across the cluster environment, and through time. We analyse the stellar mass functions (SMFs) of 17 galaxy clusters within the GOGREEN and GCLASS surveys in the range $0.8< z<1.5$, and with $$\log {(M/{\rm {M_\odot }})}>9.5$$. The data are fit simultaneously with a Bayesian model that allows the Schechter function parameters of the quiescent and star-forming populations to vary smoothly with cluster-centric radius and redshift. The model also fits the radial galaxy number density profile of each population, allowing the global quenched fraction to be parametrized as a function of redshift and cluster velocity dispersion. We find the star-forming SMF to not depend on radius or redshift. For the quiescent population however, there is $$\sim 2\sigma$$ evidence for a radial dependence. Outside the cluster core ($$R>0.3\, R_{\rm 200}$$), the quenched fraction above $$\log {(M/{\rm {M_\odot }})}=9.5$$ is $$\sim 40{\rm\,\,per\, cent}$$, and the quiescent SMF is similar in shape to the star-forming field. In contrast, the cluster core has an elevated quenched fraction ($$\sim 70{\rm \,\,per\, cent}$$), and a quiescent SMF similar in shape to the quiescent field population. We explore contributions of ‘early mass-quenching’ and mass-independent ‘environmental-quenching’ models in each of these radial regimes. The core is well described primarily by early mass-quenching, which we interpret as accelerated quenching of massive galaxies in protoclusters, possibly through merger-driven feedback mechanisms. The non-core is better described through mass-independent environmental-quenching of the infalling field population. 
    more » « less
  5. ABSTRACT We present a post-processing catalogue of globular clusters (GCs) for the 39 most massive groups and clusters in the TNG50 simulation of the IlllustrisTNG project (virial masses $$M_{200} =[5\times 10^{12} \rm {\!-\!} 2 \times 10^{14}$$] M⊙). We tag GC particles to all galaxies with stellar mass M* ≥ 5 × 106 M⊙, and we calibrate their masses to reproduce the observed power-law relation between GC mass and halo mass for galaxies with M200 ≥ 1011 M⊙ (corresponding to M* ∼ 109 M⊙). Here, we explore whether an extrapolation of this MGC–M200 relation to lower mass dwarfs is consistent with current observations. We find a good agreement between our predicted number and specific frequency of GCs in dwarfs with $$\rm {\it M}_*=[5 \times 10^6 \rm {\!-\!} 10^9]$$ M⊙ and observations. Moreover, we predict a steep decline in the GC occupation fraction for dwarfs with M* < 109 M⊙ that agrees well with current observational constraints. This declining occupation fraction is due to a combination of tidal stripping in all dwarfs plus a stochastic sampling of the GC mass function for dwarfs with M* < 107.5 M⊙. Our simulations also reproduce available constraints on the abundance of intracluster GCs in Virgo and Centaurus A. These successes provide support to the hypothesis that the MGC–M200 relation holds, albeit with more scatter, all the way down to the regime of classical dwarf spheroidals in these environments. Our GC catalogues are publicly available as part of the IllustrisTNG data release. 
    more » « less