Abstract. This paper studies how to improve the accuracy of hydrologic models using machine-learning models as post-processors and presents possibilities to reduce the workload to create an accurate hydrologic model by removing the calibration step. It is often challenging to develop an accurate hydrologic model due to the time-consuming model calibration procedure and the nonstationarity of hydrologic data. Our findings show that the errors of hydrologic models are correlated with model inputs. Thus motivated, we propose a modeling-error-learning-based post-processor framework by leveraging this correlation to improve the accuracy of a hydrologic model. The key idea is to predict the differences (errors) between the observed values and the hydrologic model predictions by using machine-learning techniques. To tackle the nonstationarity issue of hydrologic data, a moving-window-based machine-learning approach is proposed to enhance the machine-learning error predictions by identifying the local stationarity of the data using a stationarity measure developed based on the Hilbert–Huang transform. Two hydrologic models, the Precipitation–Runoff Modeling System (PRMS) and the Hydrologic Modeling System (HEC-HMS), are used to evaluate the proposed framework. Two case studies are provided to exhibit the improved performance over the original model using multiple statistical metrics. 
                        more » 
                        « less   
                    
                            
                            A Hybrid, Non‐Stationary Stochastic Watershed Model (SWM) for Uncertain Hydrologic Simulations Under Climate Change
                        
                    
    
            Abstract Stochastic Watershed Models (SWMs) are emerging tools in hydrologic modeling used to propagate uncertainty into model predictions by adding samples of model error to deterministic simulations. One of the most promising uses of SWMs is uncertainty propagation for hydrologic simulations under climate change. However, a core challenge is that the historical predictive uncertainty may not correctly characterize the error distribution under future climate. For example, the frequency of physical processes (e.g., snow accumulation and melt) may change under climate change, and so too may the frequency of errors associated with those processes. In this work, we explore for the first time non‐stationarity in hydrologic model errors under climate change in an idealized experimental design. We fit one hydrologic model to historical observations, and then fit a second model to the simulations of the first, treating the first model as the true hydrologic system. We then force both models with climate change impacted meteorology and investigate changes to the error distribution between the models. We develop a hybrid machine learning method that maps model state variables to predictive errors, allowing for non‐stationary error distributions based on changes in the frequency of model states. We find that this procedure provides an internally consistent methodology to overcome stationarity assumptions in error modeling and offers an important advance for implementing SWMs under climate change. We test this method on three hydrologically distinct watersheds in California (Feather River, Sacramento River, Calaveras River), finding that the hybrid model performs best in larger and less flashy basins. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2205239
- PAR ID:
- 10511836
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 60
- Issue:
- 5
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Compound floods may happen in low-lying estuarine environments when sea level above normal tide co-occurs with high river flow. Thus, comprehensive flood risk assessments for estuaries should not only account for the individual hazard arising from each environmental variable in isolation, but also for the case of bivariate hazard. Characterization of the dependence structure of the two flood drivers becomes then crucial, especially under climatic variability and change that may affect their relationship. In this article, we demonstrate our search for evidence of non-stationarity in the dependence between river discharge and storm surge along the East and Gulf coasts of the United States, driven by large-scale climate variability, particularly El-Niño Southern Oscillation and North Atlantic Oscillation (NAO). Leveraging prolonged overlapping observational records and copula theory, we recover parameters of both stationary and dynamic copulas using state-of-the-art Markov Chain Monte Carlo methods. Physics-informed copulas are developed by modeling the magnitude of dependence as a linear function of large-scale climate indices, i.e., Oceanic Niño Index or NAO index. After model comparison via suitable Bayesian metrics, we find no strong indication of such non-stationarity for most estuaries included in our analysis. However, when non-stationarity due to these climate modes cannot be neglected, this work highlights the importance of appropriately characterizing bivariate hazard under non-stationarity assumption. As an example, we find that during a strong El-Niño year, Galveston Bay, TX, is much more likely to experience a coincidence of abnormal sea level and elevated river stage.more » « less
- 
            Hydroclimate and terrestrial hydrology greatly influence the local community, ecosystem, and economy in Alaska and Yukon River Basin. A high‐resolution simulation of the historical climate in Alaska can provide an important benchmark for climate change studies. In this study, we utilized the Regional Arctic System Model (RASM) and conducted coupled land‐atmosphere modeling for Alaska and Yukon River Basin at 4‐km grid spacing. In RASM, the land model was replaced with the Community Terrestrial Systems Model (CTSM) given its comprehensive process representations for cold regions. The microphysics schemes in the Weather Research and Forecast (WRF) atmospheric model were manually tuned for optimal model performance. This study aims to maintain good model performance for both hydroclimate and terrestrial hydrology, especially streamflow, which was rarely a priority in coupled models. Therefore, we implemented a strategy of iterative testing and optimization of CTSM. A multi‐decadal climate data set (1990–2021) was generated using RASM with optimized land parameters and manually tuned WRF microphysics. When evaluated against multiple observational data sets, this data set well captures the climate statistics and spatial distributions for five key weather variables and hydrologic fluxes, including precipitation, air temperature, snow fraction, evaporation‐to‐precipitation ratios, and streamflow. The simulated precipitation shows wet bias during the spring season and simulated air temperatures exhibit dampened seasonality with warm biases in winter and cold biases in summer. We used transfer entropy to investigate the discrepancy in connectivity of hydrologic and energy fluxes between the offline CTSM and coupled models, which contributed to their discrepancy in streamflow simulations.more » « less
- 
            Abstract This study examines whether deep learning models can produce reliable future projections of streamflow under warming. We train a regional long short‐term memory network (LSTM) to daily streamflow in 15 watersheds in California and develop three process models (HYMOD, SAC‐SMA, and VIC) as benchmarks. We force all models with scenarios of warming and assess their hydrologic response, including shifts in the hydrograph and total runoff ratio. All process models show a shift to more winter runoff, reduced summer runoff, and a decline in the runoff ratio due to increased evapotranspiration. The LSTM predicts similar hydrograph shifts but in some watersheds predicts an unrealistic increase in the runoff ratio. We then test two alternative versions of the LSTM in which process model outputs are used as either additional training targets (i.e., multi‐output LSTM) or input features. Results indicate that the multi‐output LSTM does not correct the unrealistic streamflow projections under warming. The hybrid LSTM using estimates of evapotranspiration from SAC‐SMA as an additional input feature produces more realistic streamflow projections, but this does not hold for VIC or HYMOD. This suggests that the hybrid method depends on the fidelity of the process model. Finally, we test climate change responses under an LSTM trained to over 500 watersheds across the United States and find more realistic streamflow projections under warming. Ultimately, this work suggests that hybrid modeling may support the use of LSTMs for hydrologic projections under climate change, but so may training LSTMs to a large, diverse set of watersheds.more » « less
- 
            Abstract. Assessing impacts of climate change on hydrologic systemsis critical for developing adaptation and mitigation strategies for waterresource management, risk control, and ecosystem conservation practices. Suchassessments are commonly accomplished using outputs from a hydrologic modelforced with future precipitation and temperature projections. The algorithmsused for the hydrologic model components (e.g., runoff generation) canintroduce significant uncertainties into the simulated hydrologic variables.Here, a modeling framework was developed that integrates multiple runoffgeneration algorithms with a routing model and associated parameteroptimizations. This framework is able to identify uncertainties from bothhydrologic model components and climate forcings as well as associatedparameterization. Three fundamentally different runoff generationapproaches, runoff coefficient method (RCM, conceptual), variableinfiltration capacity (VIC, physically based, infiltration excess), andsimple-TOPMODEL (STP, physically based, saturation excess), were coupledwith the Hillslope River Routing model to simulate surface/subsurface runoffand streamflow. A case study conducted in Santa Barbara County, California,reveals increased surface runoff in February and March but decreasedrunoff in other months, a delayed (3 d, median) and shortened (6 d,median) wet season, and increased daily discharge especially for theextremes (e.g., 100-year flood discharge, Q100). The Bayesian modelaveraging analysis indicates that the probability of such an increase can be up to85 %. For projected changes in runoff and discharge, general circulationmodels (GCMs) and emission scenarios are two major uncertainty sources,accounting for about half of the total uncertainty. For the changes inseasonality, GCMs and hydrologic models are two major uncertaintycontributors (∼35 %). In contrast, the contribution ofhydrologic model parameters to the total uncertainty of changes in thesehydrologic variables is relatively small (<6 %), limiting theimpacts of hydrologic model parameter equifinality in climate change impactanalysis. This study provides useful information for practices associatedwith water resources, risk control, and ecosystem conservation and forstudies related to hydrologic model evaluation and climate change impactanalysis for the study region as well as other Mediterranean regions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
