skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Circular Dichroism Sensing: Strategies and Applications
The analysis of the absolute configuration, enantiomeric composition, and concentration of chiral compounds are frequently encountered tasks across the chemical and health sciences. Chiroptical sensing methods can streamline this work and allow high-throughput screening with remarkable reduction of operational time and cost. During the last few years, significant methodological advances with innovative chirality sensing systems, the use of computer-generated calibration curves, machine learning assistance, and chemometric data processing, to name a few, have emerged and are now matched with commercially available multi-well plate CD readers. These developments have reframed the chirality sensing space and provide new opportunities that are of interest to a large group of chemists. This review will discuss chirality sensing strategies and applications with representative small-molecule CD sensors. Emphasis will be given to important milestones and recent advances that accelerate chiral compound analysis by outperforming traditional methods, conquer new directions, and pioneering efforts that lie at the forefront of chiroptical high-throughput screening developments. The goal is to provide the reader with a thorough understanding of the current state and a perspective of future directions of this rapidly emerging field.  more » « less
Award ID(s):
2246747
PAR ID:
10511915
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
63
Issue:
19
ISSN:
1433-7851
Page Range / eLocation ID:
e202400767
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Isatins are extensively researched compounds with diverse applications, particularly as synthetic precursors in pharmaceutical developments. However, their use as optical probes for enantioselective sensing of chiral amines has not been explored to date. Herein, we present a novel chiroptical assay with an optimized isatin that generates strong, red‐shifted circular dichroism (CD) signals at approximately 380 nm upon ketimine formation with chiral amines. The intensity of the induced CD signal increases linearly with the enantiomeric excess of the analyte and thus allows quantitative chirality analysis. The general usefulness of this approach is demonstrated with a broad range of aliphatic and aromatic chiral amines, and by accurate determination of the enantiomeric composition of 10 samples. 
    more » « less
  2. Abstract A reaction‐based optical relay sensing strategy that enables accurate determination of the concentration and enantiomeric ratio (er) of challenging chiral alcohols exhibiting stereocenters at the α‐, β‐, γ‐ or even δ‐position or hard‐to‐detect cryptochirality arising from H/D substitution is described. This unmatched application scope is achieved with a conceptually new sensing approach by which the alcohol moiety is replaced with an optimized achiral sulfonamide chromophore to minimize the distance between the covalently attached chiroptical reporter unit and the stereogenic center in the substrate. The result is a remarkably strong, red‐shifted CD induction that increases linearly with the sampleer. The CD sensing part of the tandem assay is seamlessly coupled to a redox reaction with a quinone molecule to generate a characteristic UV response that is independent of the enantiopurity of the alcohol and thus allows determination of the total analyte concentration. The robustness and utility of the CD/UV relay are further verified by chromatography‐free asymmetric reaction analysis with small aliquots of crude product mixtures, paving the way toward high‐throughput chiral compound screening workflows which is a highly sought‐after goal in the pharmaceutical industry. 
    more » « less
  3. Abstract A sterically encumbered aminoborane sensor is introduced and used for quantitative stereochemical analysis of monoalcohols, diols and amino alcohols. The small‐molecule probe exhibits a rigid ortho‐substituted arene scaffold with a proximate boron binding site and a triarylamine circular dichroism (CD) reporter unit which proved to be crucial for the observed chiroptical signal induction. Coordination of the chiral target molecule produces strong Cotton effects and UV changes that are readily correlated to its absolute configuration, enantiomeric composition and concentration to achieve comprehensive stereochemical analysis within a 5 % absolute error margin. The sensing method was successfully applied in the chromatography‐free analysis of less than one milligram of a crude asymmetric reaction mixture and the advantages of this chiroptical sensing approach, which is amenable to high‐throughput experimentation equipment and automation, over traditional methods is discussed. 
    more » « less
  4. Abstract Detection and identification of chiral molecules are important for pharmaceutical industry, clinical analysis, and food analysis. Here, chiral molecular sensing based on spatially selective coupling between achiral metasurface and chiral molecules is demonstrated. The designed achiral metasurface exhibits strong optical chirality and electric field with dissymmetric distribution, and chiral molecules are selectively placed over the area with large optical chirality to form the coupled metasurface-molecule system with circular dichroism (CD) response for chiral molecular sensing. The CD spectra of the metasurface coupled with pure D-alanine enantiomer, L-alanine enantiomer and their mixtures are examined. The linear relationship between the peak CD value and the enantiomeric excess is demonstrated for the detection and identification of pure enantiomers and their mixtures. Furthermore, the CD response of the coupled system shows potential for the sensing of molar concentration of chiral molecules. Moreover, the effect of spatial location of molecules on the CD response is analyzed to show potential for position sensing of chiral molecules. These results of chiral molecular sensing with achiral metasurface offer new opportunities for advancing biomolecular sensing applications. 
    more » « less
  5. Abstract Piano stool complexes have been studied over many years and found widespread applications in organic synthesis, catalysis, materials and drug development. We now report the first examples of quantitative chiroptical molecular recognition of chiral compounds through click‐like η6‐arene coordination with readily available half sandwich complexes. This conceptually new approach to chirality sensing is based on irreversible acetonitrile displacement of [Cp*Ru(CH3CN)3]PF6by an aromatic target molecule, a process that is fast and complete within a few minutes at room temperature. The metal coordination coincides with characteristic circular dichroism inductions that can be easily correlated to the absolute configuration and enantiomeric ratio of the bound molecule. A relay assay that decouples the determination of the enantiomeric composition and of the total sample amount by a practical CD/UV measurement protocol was developed and successfully tested. The introduction of piano stool complexes to the chiroptical sensing realm is mechanistically unique and extends the scope of currently known methods with small‐molecule probes that require the presence of amino, alcohol, carboxylate or other privileged functional groups for binding of the target compound. A broad application range including pharmaceutically relevant multifunctional molecules and the use in chromatography‐free asymmetric reaction analysis are also demonstrated. 
    more » « less