A sterically encumbered aminoborane sensor is introduced and used for quantitative stereochemical analysis of monoalcohols, diols and amino alcohols. The small‐molecule probe exhibits a rigid ortho‐substituted arene scaffold with a proximate boron binding site and a triarylamine circular dichroism (CD) reporter unit which proved to be crucial for the observed chiroptical signal induction. Coordination of the chiral target molecule produces strong Cotton effects and UV changes that are readily correlated to its absolute configuration, enantiomeric composition and concentration to achieve comprehensive stereochemical analysis within a 5 % absolute error margin. The sensing method was successfully applied in the chromatography‐free analysis of less than one milligram of a crude asymmetric reaction mixture and the advantages of this chiroptical sensing approach, which is amenable to high‐throughput experimentation equipment and automation, over traditional methods is discussed.
This content will become publicly available on May 6, 2025
- Award ID(s):
- 2246747
- NSF-PAR ID:
- 10511915
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 63
- Issue:
- 19
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- e202400767
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The advances of high-throughput experimentation technology and chemometrics have revolutionized the pace of scientific progress and enabled previously inconceivable discoveries, in particular when used in tandem. Here we show that the combination of chirality sensing based on small-molecule optical probes that bind to amines and amino alcohols via dynamic covalent or click chemistries and powerful chemometric tools that achieve orthogonal data fusion and spectral deconvolution yields a streamlined multi-modal sensing protocol that allows analysis of the absolute configuration, enantiomeric composition and concentration of structurally analogous—and therefore particularly challenging—chiral target compounds without laborious and time-consuming physical separation. The practicality, high accuracy, and speed of this approach are demonstrated with complicated quaternary and octonary mixtures of varying chemical and chiral compositions. The advantages over chiral chromatography and other classical methods include operational simplicity, increased speed, reduced waste production, low cost, and compatibility with multiwell plate technology if high-throughput analysis of hundreds of samples is desired.more » « less
-
Abstract Piano stool complexes have been studied over many years and found widespread applications in organic synthesis, catalysis, materials and drug development. We now report the first examples of quantitative chiroptical molecular recognition of chiral compounds through click‐like η6‐arene coordination with readily available half sandwich complexes. This conceptually new approach to chirality sensing is based on irreversible acetonitrile displacement of [Cp*Ru(CH3CN)3]PF6by an aromatic target molecule, a process that is fast and complete within a few minutes at room temperature. The metal coordination coincides with characteristic circular dichroism inductions that can be easily correlated to the absolute configuration and enantiomeric ratio of the bound molecule. A relay assay that decouples the determination of the enantiomeric composition and of the total sample amount by a practical CD/UV measurement protocol was developed and successfully tested. The introduction of piano stool complexes to the chiroptical sensing realm is mechanistically unique and extends the scope of currently known methods with small‐molecule probes that require the presence of amino, alcohol, carboxylate or other privileged functional groups for binding of the target compound. A broad application range including pharmaceutically relevant multifunctional molecules and the use in chromatography‐free asymmetric reaction analysis are also demonstrated.
-
Abstract Piano stool complexes have been studied over many years and found widespread applications in organic synthesis, catalysis, materials and drug development. We now report the first examples of quantitative chiroptical molecular recognition of chiral compounds through click‐like η6‐arene coordination with readily available half sandwich complexes. This conceptually new approach to chirality sensing is based on irreversible acetonitrile displacement of [Cp*Ru(CH3CN)3]PF6by an aromatic target molecule, a process that is fast and complete within a few minutes at room temperature. The metal coordination coincides with characteristic circular dichroism inductions that can be easily correlated to the absolute configuration and enantiomeric ratio of the bound molecule. A relay assay that decouples the determination of the enantiomeric composition and of the total sample amount by a practical CD/UV measurement protocol was developed and successfully tested. The introduction of piano stool complexes to the chiroptical sensing realm is mechanistically unique and extends the scope of currently known methods with small‐molecule probes that require the presence of amino, alcohol, carboxylate or other privileged functional groups for binding of the target compound. A broad application range including pharmaceutically relevant multifunctional molecules and the use in chromatography‐free asymmetric reaction analysis are also demonstrated.
-
A chromophoric bifunctional probe design that allows selective chiroptical sensing of cysteine in aqueous solution is introduced. The common need for chiral HPLC separation is eliminated which expedites and simplifies the sample analysis while reducing solvent waste. Screening of the reaction between six phenacyl bromides and the enantiomers of cysteine showed that cyclization to an unsaturated thiomorpholine scaffold coincides with characteristic UV and CD effects, in particular when the reagent carries a proximate auxochromic nitro group. The UV changes and CD inductions were successfully used for determination of the absolute configuration, enantiomeric composition and total concentration of 18 test samples. This assay is highly selective for free cysteine while other amino acids, cysteine derived small peptides and biothiols do not interfere with the chiroptical signal generation.more » « less