Abstract Equilibrium geometry of single‐thread rivers with fixed width (engineered rivers) is determined with a flow resistance relation and a sediment transport relation, if characteristic discharge, sediment caliber and supply are specified. In self‐formed channels, however, channel width is not imposed, and one more relation is needed to predict equilibrium geometry. Specifying this relation remains an open problem. Here we present a new model that brings together a coherent train of research progress over 35 years to predict equilibrium geometry of single‐thread rivers from the conservation of channel and floodplain material. Predicted channel geometries are comparable with field observations. In response to increasing floodplain width, sand load and grain size, the equilibrium slope increases, bankfull depth and width decrease. As the volume fraction content of mud in the sediment load increases, bankfull width‐to‐depth ratio and slope decrease suggesting that mud load has a strong control on channel patterns and bankfull geometry.
more »
« less
Spatial variation in drainage area — Runoff relationships and implications for bankfull geometry scaling
Fluvial geomorphic analyses frequently require knowledge of bankfull channel geometries, which are thought to be related to characteristic stream discharges. However, relating bankfull geometry to characteristic discharge is challenged by spatially limited stream discharge measurements, which may also lack extensive temporal records. Because of these limitations, discharge is commonly assumed to scale linearly with watershed drainage area. Here we evaluate the assumption of a linear relationship between discharge and drainage area for watersheds across the United States and Canada with limited anthropogenic disturbance. Using machine-learning to objectively cluster hydrologically similar gauges, we find that discharge scales linearly with drainage area for most of North America. However, regions with low average runoff efficiency tend to have non-linear dischargescaling. In regions with non-linear discharge scaling, bankfull channel dimensions increase more rapidly with drainage area than in regions with linear discharge scaling. These results suggest that the recurrence interval of the characteristic discharge that sets channel geometry may be larger in regions where discharge scales nonlinearly with drainage area compared to those regions where linear discharge scaling applies.
more »
« less
- Award ID(s):
- 1951469
- PAR ID:
- 10512013
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Geomorphology
- Volume:
- 446
- Issue:
- C
- ISSN:
- 0169-555X
- Page Range / eLocation ID:
- 108998
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Modeled stream discharge is often used to drive sediment transport models across channel networks. Because sediment transport varies non‐linearly with flow rates, discharge modeled from daily total precipitation distributed evenly over 24‐hr may significantly underestimate actual bedload transport capacity. In this study, we assume bedload transport capacity determined from a hydrograph resulting from the use of hourly (1‐hr) precipitation is a close approximation of actual transport capacity and quantify the error introduced into a network‐scale bedload transport model driven by daily precipitation at channel network locations varying from lowland pool‐riffle channels to upland colluvial channels in a watershed where snow accumulation and melt can affect runoff processes. Transport capacity is determined using effective stresses and the Wilcock and Crowe (2003) equations and expressed in terms of transport capacity normalized by the bankfull value. We find that, depending on channel network location, cumulative error can range from 10% to more than two orders of magnitude. Surprisingly, variation in flow rates due to differences in hillslope and channel runoff do not seem to dictate the network locations where the largest errors in predicted bedload transport capacity occur. Rather, spatial variability of the magnitude of the effective‐bankfull‐excess shear stress and changes in runoff due to snow accumulation and melt exert the greatest influence. These findings have implications for flood‐hazard and aquatic habitat models that rely on modeled sediment transport driven by coarse‐temporal‐resolution climate data.more » « less
-
Abstract During a flood, the geometry of a river channel constrains the flows of water and sediment, however, over many floods, bankfull channel geometry evolves to reflect the longer‐term fluxes of water and sediment supplied by the catchment. Physics‐based models predict the average relationship between bankfull geometry and discharge to within an order of magnitude, however, observed variability about the prediction remains unaccounted for. We used high‐resolution topography to extract continuous measurements of bankfull width from 67 sites spanning the continental United States, yielding a reach‐scale probabilistic description of river width for each site. Within an individual reach, bankfull river width is well‐described by a lognormal distribution. Rivers that spend a greater proportion of time above bankfull are wider for the same bankfull discharge, revealing an unrecognized pathway through which climatic or engineered changes in flow frequency could alter river geometry and therefore impact aquatic habitat and flooding risk.more » « less
-
Abstract. The width of valleys and channels affects the hydrology, ecology,and geomorphic functionality of drainage networks. In many studies, thewidth of valleys and/or channels (W) is estimated as a power-law function ofthe drainage area (A), W=kcAd. However, in fluvial systemsthat experience drainage reorganization, abrupt changes in drainage areadistribution can result in valley or channel widths that are disproportionalto their drainage areas. Such disproportionality may be more distinguishedin valleys than in channels due to a longer adjustment timescale forvalleys. Therefore, the valley width–area scaling in reorganized drainagesis expected to deviate from that of drainages that did not experiencereorganization. To explore the effect of reorganization on valley width–drainage areascaling, we studied 12 valley sections in the Negev desert, Israel,categorized into undisturbed, beheaded, and reversed valleys. We found thatthe values of the drainage area exponents, d, are lower in the beheadedvalleys relative to undisturbed valleys but remain positive. Reversedvalleys, in contrast, are characterized by negative d exponents, indicatingvalley narrowing with increasing drainage area. In the reversed category, wealso explored the independent effect of channel slope (S) through theequation W=kbAbSc, which yieldednegative and overall similar values for b and c. A detailed study in one reversed valley section shows that the valleynarrows downstream, whereas the channel widens, suggesting that, ashypothesized, the channel width adjusts faster to post-reorganizationdrainage area distribution. The adjusted narrow channel dictates the widthof formative flows in the reversed valley, which contrasts with the meaningfullywider formative flows of the beheaded valley across the divide. Thisdifference results in a step change in the unit stream power between thereversed and beheaded channels, potentially leading to a “width feedback”that promotes ongoing divide migration and reorganization. Our findings demonstrate that valley width–area scaling is a potential toolfor identifying landscapes influenced by drainage reorganization. Accountingfor reorganization-specific scaling can improve estimations of erosion ratedistributions in reorganized landscapes.more » « less
-
Abstract Bedrock river width is an essential geometric parameter relevant to understanding flood hazards and gauging station rating curves, and is critical to stream power incision models and many other landscape evolution models. Obtaining bedrock river width measurements, however, typically requires extensive field campaigns that take place in rugged and steep topography where river access is often physically challenging. Although prior work has turned to measuring channel width from satellite imagery, these data present a snapshot in time, are typically limited to rivers ≥ 10–30 m wide due to the image resolution, and are physically restricted to areas devoid of vegetation. For these reasons, we are generally data limited, and the factors impacting bedrock channel width remain poorly understood. Due to these limitations, researchers often turn to assumptions of width‐scaling relationships with drainage area or discharge to estimate bedrock channel width. Here we present a new method of obtaining bedrock channel width at a desired river discharge through the incorporation of a high‐resolution bare‐earth digital elevation model (DEM) using MATLAB Topotoolbox and the HEC‐RAS river analysis system. We validate this method by comparing modeled results to US Geological Survey (USGS) field measurements at existing gauging stations, as well as field channel measurements. We show that this method can capture general characteristics of discharge rating curves and predict field‐measured channel widths within uncertainty. As high‐resolution DEMs become more available across the United States through the USGS three‐dimensional elevation program (3DEP), the future utility of this method is notable. Through developing and validating a streamlined, open‐source, and freely available workflow of channel width extraction, we hope this method can be applied to future research to improve the quantity of channel width measurements and improve our understanding of bedrock channels.more » « less
An official website of the United States government

