skip to main content


Title: Fully 3D‐Printed Miniature Soft Hydraulic Actuators with Shape Memory Effect for Morphing and Manipulation
Abstract

Miniature shape‐morphing soft actuators driven by external stimuli and fluidic pressure hold great promise in morphing matter and small‐scale soft robotics. However, it remains challenging to achieve both rich shape morphing and shape locking in a fast and controlled way due to the limitations of actuation reversibility and fabrication. Here, fully 3D‐printed, sub‐millimeter thin‐plate‐like miniature soft hydraulic actuators with shape memory effect (SME) for programable fast shape morphing and shape locking, are reported. It combines commercial high‐resolution multi‐material 3D printing of stiff shape memory polymers (SMPs) and soft elastomers and direct printing of microfluidic channels and 2D/3D channel networks embedded in elastomers in a single print run. Leveraging spatial patterning of hybrid compositions and expansion heterogeneity of microfluidic channel networks for versatile hydraulically actuated shape morphing, including circular, wavy, helical, saddle, and warping shapes with various curvatures, are demonstrated. The morphed shapes can be temporarily locked and recover to their original planar forms repeatedly by activating SME of the SMPs. Utilizing the fast shape morphing and locking in the miniature actuators, their potential applications in non‐invasive manipulation of small‐scale objects and fragile living organisms, multimodal entanglement grasping, and energy‐saving manipulators, are demonstrated.

 
more » « less
Award ID(s):
2329674
PAR ID:
10512157
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Elastomers generally possess low Young's modulus and high failure strain, which are widely used in soft robots and intelligent actuators. However, elastomers generally lack diverse functionalities, such as stimulated shape morphing, and a general strategy to implement these functionalities into elastomers is still challenging. Here, a microfluidic 3D droplet printing platform is developed to design composite elastomers architected with arrays of functional droplets. Functional droplets with controlled size, composition, position, and pattern are designed and implemented in the composite elastomers, imparting functional performances to the systems. The composited elastomers are sensitive to stimuli, such as solvent, temperature, and light, and are able to demonstrate multishape (bow‐ and S‐shaped), multimode (gradual and sudden), and multistep (one‐ and two‐step) deformations. Based on the unique properties of droplet‐embedded composite elastomers, a variety of stimuli‐responsive systems are developed, including designable numbers, biomimetic flowers, and soft robots, and a series of functional performances are achieved, presenting a facile platform to impart diverse functionalities into composite elastomers by microfluidic 3D droplet printing.

     
    more » « less
  2. Shape-memory actuators allow machines ranging from robots to medical implants to hold their form without continuous power, a feature especially advantageous for situations where these devices are untethered and power is limited. Although previous work has demonstrated shape-memory actuators using polymers, alloys, and ceramics, the need for micrometer-scale electro–shape-memory actuators remains largely unmet, especially ones that can be driven by standard electronics (~1 volt). Here, we report on a new class of fast, high-curvature, low-voltage, reconfigurable, micrometer-scale shape-memory actuators. They function by the electrochemical oxidation/reduction of a platinum surface, creating a strain in the oxidized layer that causes bending. They bend to the smallest radius of curvature of any electrically controlled microactuator (~500 nanometers), are fast (<100-millisecond operation), and operate inside the electrochemical window of water, avoiding bubble generation associated with oxygen evolution. We demonstrate that these shape-memory actuators can be used to create basic electrically reconfigurable microscale robot elements including actuating surfaces, origami-based three-dimensional shapes, morphing metamaterials, and mechanical memory elements. Our shape-memory actuators have the potential to enable the realization of adaptive microscale structures, bio-implantable devices, and microscopic robots.

     
    more » « less
  3. Abstract

    High-performance lightweight architectures, such as metallic microlattices with excellent mechanical properties have been 3D printed, but they do not possess shape memory effect (SME), limiting their usages for advanced engineering structures, such as serving as a core in multifunctional lightweight sandwich structures. 3D printable self-healing shape memory polymer (SMP) microlattices could be a solution. However, existing 3D printable thermoset SMPs are limited to either low strength, poor stress memory, or non-recyclability. To address this issue, a new thermoset polymer, integrated with high strength, high recovery stress, perfect shape recovery, good recyclability, and 3D printability using direct light printing, has been developed in this study. Lightweight microlattices with various unit cells and length scales were printed and tested. The results show that the cubic microlattice has mechanical strength comparable to or even greater than that of metallic microlattices, good SME, decent recovery stress, and recyclability, making it the first multifunctional lightweight architecture (MLA) for potential multifunctional lightweight load carrying structural applications.

     
    more » « less
  4. Abstract

    Liquid crystal elastomers (LCEs) are soft materials capable of large, reversible shape changes, which may find potential application as artificial muscles, soft robots, and dynamic functional architectures. Here, the design and additive manufacturing of LCE actuators (LCEAs) with spatially programed nematic order that exhibit large, reversible, and repeatable contraction with high specific work capacity are reported. First, a photopolymerizable, solvent‐free, main‐chain LCE ink is created via aza‐Michael addition with the appropriate viscoelastic properties for 3D printing. Next, high operating temperature direct ink writing of LCE inks is used to align their mesogen domains along the direction of the print path. To demonstrate the power of this additive manufacturing approach, shape‐morphing LCEA architectures are fabricated, which undergo reversible planar‐to‐3D and 3D‐to‐3D′ transformations on demand, that can lift significantly more weight than other LCEAs reported to date.

     
    more » « less
  5. Abstract

    Active soft materials that change shape on demand are of interest for a myriad of applications, including soft robotics, biomedical devices, and adaptive systems. Despite recent advances, the ability to rapidly design and fabricate active matter in complex, reconfigurable layouts remains challenging. Here, the 3D printing of core‐sheath‐shell dielectric elastomer fibers (DEF) and fiber bundles with programmable actuation is reported. Complex shape morphing responses are achieved by printing individually addressable fibers within 3D architectures, including vertical coils and fiber bundles. These DEF devices exhibit resonance frequencies up to 700 Hz and lifetimes exceeding 2.6 million cycles. The multimaterial, multicore‐shell 3D printing method opens new avenues for creating active soft matter with fast programable actuation.

     
    more » « less