skip to main content


This content will become publicly available on May 21, 2025

Title: Cryptic or underworked? Taxonomic revision of the Antistrophus rufus species complex (Cynipoidea, Aulacideini)

Cryptic species present challenges across many subdisciplines of biology. Not all “cryptic” species, however, are truly cryptic; many are simply underexplored morphologically. We examined this idea for theAntistrophus rufusspecies complex, which previously contained three species thought to be morphologically cryptic. To determine whether theA. rufuscomplex are truly cryptic species, we assessed species boundaries of members of theA. rufusspecies complex using morphological, ecological, and DNA barcode data, and tested whether a set of 50 morphological characters could adequately diagnose these species. We revealed that this complex includes five species, and that there are useful phenotypic diagnostic characters for all members of this species complex. This enabled redescription of four species and the description ofAntistrophus laurenaeNastasi,sp. nov., which induces externally inconspicuous galls in stems ofSilphium integrifoliumMichx., a host not associated with other members of the complex. We use these new diagnostic characters to construct a key to the five species of therufuscomplex. We conclude that theA. rufuscomplex was not a true case of cryptic species. Our Bayesian analysis of DNA barcode data suggests possible cospeciation of members of therufuscomplex and theirSilphiumhost plants, but further study is necessary to better understand the evolution of host use in the lineage.

 
more » « less
Award ID(s):
1856626 2338008
NSF-PAR ID:
10512282
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Pensoft
Date Published:
Journal Name:
Journal of Hymenoptera Research
Volume:
97
ISSN:
1070-9428
Page Range / eLocation ID:
399 to 439
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Species of the genusLathrobiumGravenhorst (Coleoptera: Staphylinidae: Paederinae) from North America north of Mexico are reviewed and 41 species are recognized. Morphology and mitochondrial COI sequence data were used to guide species designations in three flightless lineages endemic to the southern Appalachian Mountains, a biologically diverse region known for cryptic diversity. Using a combination of phylogeny, algorithm-based species delimitation analyses, and genitalic morphology, five new cryptic species are described and possible biogeographic scenarios for their speciation hypothesized:L. balsamenseHaberski & Caterino,sp. nov.,L. camplyacraHaberski & Caterino,sp. nov.,L. islaeHaberski & Caterino,sp. nov.,L. lividumHaberski & Caterino,sp. nov.,L. smokienseHaberski & Caterino,sp. nov.Five additional species are described:L. absconditumHaberski & Caterino,sp. nov.,L. hardeniHaberski & Caterino,sp. nov.,L. lapidumHaberski & Caterino,sp. nov.,L. solumHaberski & Caterino,sp. nov., andL. thompsonorumHaberski & Caterino,sp. nov.Two species are transferred fromLathrobiumtoPseudolathraCasey:Pseudolathra parcum(LeConte, 1880),comb. nov.andPseudolathra texana(Casey, 1905),comb. nov.Twenty-six names are reduced to synonymy. Lectotypes are designated for 47 species. Larvae are described where known, and characters of possible diagnostic value are summarized. Species diagnoses, distributions, illustrations of male and female genitalia, and a key toLathrobiumspecies known from the Nearctic region (including several introduced species) are provided.

     
    more » « less
  2. Molecular surveys are leading to the discovery of many new cryptic species of marine algae. This is particularly true for red algal intertidal species, which exhibit a high degree of morphological convergence.DNAsequencing of recent collections ofGelidiumalong the coast of California,USA, identified two morphologically similar entities that differed inDNAsequence from existing species. To characterize the two new species ofGelidiumand to determine their evolutionary relationships to other known taxa, phylogenomic, multigene analyses, and morphological observations were performed. Three complete mitogenomes and five plastid genomes were deciphered, including those from the new species candidates and the type materials of two closely related congeners. The mitogenomes contained 45 genes and had similar lengths (24,963–24,964 bp). The plastid genomes contained 232 genes and were roughly similar in size (175,499–177,099 bp). The organellar genomes showed a high level of gene synteny. The twoGelidiumspecies are diminutive, turf‐forming, and superficially resemble several long established species from the Pacific Ocean. The phylogenomic analysis, multigene phylogeny, and morphological evidence confirms the recognition and naming of two new species, describe herein asG. gabrielsoniiandG. kathyanniae. On the basis of the monophyly ofG. coulteri,G. gabrielsonii,G. galapagense, andG. kathyanniae, we suggest that this lineage likely evolved in California. Organellar genomes provide a powerful tool for discovering cryptic intertidal species and they continue to improve our understanding of the evolutionary biology of red algae and the systematics of the Gelidiales.

     
    more » « less
  3. The subgenus Ochthomantis is an obligate forest and stream-dwelling group of mantellid frogs, endemic to Madagascar, with six species currently recognized. However, this group suffers from ongoing taxonomic confusion due to low numbers of examined specimens, and failure to consider morphological variation from development and sexual dimorphism. Here, we examined the morphology of 637 sexed adult specimens collected by us in the field and from other museum collections. We also sequenced a DNA fragment of the 16S mtDNA gene for each lineage to determine congruence between morphological and molecular data sets and to help delimit species. Our results demonstrate that the subgenus Ochthomantis includes eleven valid species: five already recognized, M. catalai and M. poissoni that we resurrect from synonymy, and four new species which we describe for the first time here. In some analyses, Mantidactylus majori groups with other Mantidactylus subgenera, so we do not consider it a member of the subgenus Ochthomantis in this study. All species have restricted distributions and elevational ranges in the humid forests of Madagascar. This study demonstrates the utility of assessing cryptic species using both diagnostic morphological characters and molecular data. The discovery of this new cryptic biodiversity, and the taxonomic revision herein, will likely require conservation activities for those species with the most restricted distributions.

     
    more » « less
  4. Abstract

    Reconstructing a robust phylogenetic framework is key to understanding the ecology and evolution of many economically important taxa. The crambid moth genusOstriniacontains multiple agricultural pests, and its classification and phylogeny has remained controversial because of the paucity of characters and the lack of clear morphological boundaries for its species. To address these issues, we inferred a molecular phylogeny ofOstriniausing a phylogenomic dataset containing 498 loci and 115 197 nucleotide sites and examined whether traditional morphological characters corroborate our molecular results. Our results strongly support the monophyly of one of theOstriniaspecies groups but surprisingly do not support the monophyly of the other two. Based on the extensive morphological examination and broadly representative taxon sampling of the phylogenomic analyses, we propose a revised classification of the genus, defined by three species groups (Ostrinia nubilalisspecies group,Ostrinia obumbratalisspecies group, andOstrinia penitalisspecies group), which differs from the traditional classification of Mutuura & Munroe (1970). Morphological and molecular evidence reveal the presence of a new North American species,Ostrinia multispinosaYangsp.n., closely related toO.obumbratalis. Our analyses indicate that theOstriniaancestral larval host preference was for dicots, and thatO.nubilalis(European corn borer) andOstrinia furnacalis(Asian corn borer) independently evolved a preference for feeding on monocots (i.e., maize). Males of a fewOstriniaspecies have enlarged, grooved midtibiae with brush organs that are known to attract females to increase mating success during courtship, which may represent a derived condition. Our study provides a strong evolutionary framework for this agriculturally important insect lineage.

     
    more » « less
  5. Abstract

    The purpose of this study is to determine which taxonomic methods can elucidate clear and quantifiable differences between two cryptic ciliate species, and to test the utility of genome architecture as a new diagnostic character in the discrimination of otherwise indistinguishable taxa. Two cryptic tintinnid ciliates,Schmidingerella arcuataandSchmidingerella meunieri, are compared via traditional taxonomic characters including lorica morphometrics, ribosomal RNA (rRNA) gene barcodes and ecophysiological traits. In addition, single‐cell ‘omics analyses (single‐cell transcriptomics and genomics) are used to elucidate and compare patterns of micronuclear genome architecture between the congeners. The results include a highly similar lorica that is larger inS. meunieri, a 0%–0.5% difference in rRNA gene barcodes, two different and nine indistinguishable growth responses among 11 prey treatments, and distinct patterns of micronuclear genomic architecture for genes detected in both ciliates. Together, these results indicate that while minor differences exist betweenS. arcuataandS. meunieriin common indices of taxonomic identification (i.e., lorica morphology, DNA barcode sequences and ecophysiology), differences exist in their genomic architecture, which suggests potential genetic incompatibility. Different patterns of micronuclear architecture in genes shared by both isolates also enable the design of species‐specific primers, which are used in this study as unique “architectural barcodes” to demonstrate the co‐occurrence of both ciliates in samples collected from a NW Atlantic estuary. These results support the utility of genomic architecture as a tool in species delineation, especially in ciliates that are cryptic or otherwise difficult to differentiate using traditional methods of identification.

     
    more » « less