Tissue chip technology has revolutionized biomedical applications and the medical science field for the past few decades. Currently, tissue chips are one of the most powerful research tools aiding in in vitro work to accurately predict the outcome of studies when compared to monolayer two-dimensional (2D) cell cultures. While 2D cell cultures held prominence for a long time, their lack of biomimicry has resulted in a transition to 3D cell cultures, including tissue chips technology, to overcome the discrepancies often seen in in vitro studies. Due to their wide range of applications, different organ systems have been studied over the years, one of which is the blood brain barrier (BBB) which is discussed in this review. The BBB is an incredible protective unit of the body, keeping out pathogens from entering the brain through vasculature. However, there are some microbes and certain diseases that disrupt the function of this barrier which can lead to detrimental outcomes. Over the past few years, various designs of the BBB have been proposed and modeled to study drug delivery and disease modeling on Earth. More recently, researchers have started to utilize tissue chips in space to study the effects of microgravity on human health. BBB tissue chips in space can be a tool to understand function mechanisms and therapeutics. This review addresses the limitations of monolayer cell culture which could be overcome with utilizing tissue chips technology. Current BBB models on Earth and how they are fabricated as well as what influences the BBB cell culture in tissue chips are discussed. Then, this article reviews how application of these technologies together with incorporating biosensors in space would be beneficial to help in predicting a more accurate physiological response in specific tissue or organ chips. Finally, the current platforms used in space and some solutions to overcome some shortcomings for future BBB tissue chip research are also discussed. 
                        more » 
                        « less   
                    
                            
                            Organs in orbit: how tissue chip technology benefits from microgravity, a perspective
                        
                    
    
            Tissue chips have become one of the most potent research tools in the biomedical field. In contrast to conventional research methods, such as 2D cell culture and animal models, tissue chips more directly represent human physiological systems. This allows researchers to study therapeutic outcomes to a high degree of similarity to actual human subjects. Additionally, as rocket technology has advanced and become more accessible, researchers are using the unique properties offered by microgravity to meet specific challenges of modeling tissues on Earth; these include large organoids with sophisticated structures and models to better study aging and disease. This perspective explores the manufacturing and research applications of microgravity tissue chip technology, specifically investigating the musculoskeletal, cardiovascular, and nervous systems. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10512368
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Lab on a Chip Technologies
- Volume:
- 3
- ISSN:
- 2813-3862
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The use of microfluidic tissue-on-a-chip devices in conjunction with electrophysiology (EPHYS) techniques has become prominent in recent years to study cell-cell interactions critical to the understanding of cellular function in extreme environments, including spaceflight and microgravity. Current techniques are confined to invasive whole-cell recording at intermittent time points during spaceflight, limiting data acquisition and overall reduced insight on cell behaviour. Currently, there exists no validated technology that offers continuous EPHYS recording and monitoring in physiological systems exposed to microgravity. In collaboration with imec and SpaceTango, we have developed an enclosed, automated research platform that enables continuous monitoring of electrically active human cell cultures during spaceflight. The Neuropixels probe system (imec) will be integrated for the first time within an engineered in-vitro neuronal tissue-on-a-chip model that facilitates the EPHYS recording of cells in response to extracellular electrical activity in the assembled neuronal tissue platform. Our goal is to study the EPHYS recordings and understand how exposure to microgravity affects cellular interaction within human tissue-on-a-chip systems in comparison to systems maintained under Earth’s gravity. Results may be useful for dissecting the complexity of signals obtained from other tissue systems, such as cardiac or gastrointestinal, when exposed to microgravity. This study will yield valuable knowledge regarding physiological changes in human tissue-on-a-chip models due to spaceflight, as well as validate the use of this type of platform for more advanced research critical in potential human endeavours to space.more » « less
- 
            Abstract Purpose of ReviewThe purpose of this review is to share insights from recognized experts in 3D biopriniting on the recent advances in these technologies discussed during a recent workshop held in conjunction with the 2024 ISS National Laboratory Research and Development Conference (ISSRDC). We seek to answer how microgravity can be used as a disruptor to make further advances not possible through conventional means. Recent FindingsThis review will cover current efforts underway to use microgravity for 3D bioprinting. For instance multi-levitation biofabrication technology funded under the EU PULSE project is currently being used to create cardiovascular 3D in vitro models to better mimic cardiac and vascular physiology compared to organoids. These types of models could be expanded to other organ systems and disease models to use the environment of microgravity to unlock new signaling pathways to cure disease. SummaryThe major takeaway from this review is that microgravity will unlock new opportunities for 3D bioprinting that were simply not possible using conventional means. We provide forward looking answers to what microgravity will inspire from advanced biomaterials to new disease models to even creating a knowledge hub for 3D bioprinting to launch new platforms at record speeds.more » « less
- 
            Human settlements on the Moon, crewed missions to Mars and space tourism will become a reality in the next few decades. Human presence in space, especially for extended periods of time, will therefore steeply increase. However, despite more than 60 years of spaceflight, the mechanisms underlying the effects of the space environment on human physiology are still not fully understood. Animals, ranging in complexity from flies to monkeys, have played a pioneering role in understanding the (patho)physiological outcome of critical environmental factors in space, in particular altered gravity and cosmic radiation. The use of animals in biomedical research is increasingly being criticized because of ethical reasons and limited human relevance. Driven by the 3Rs concept, calling for replacement, reduction and refinement of animal experimentation, major efforts have been focused in the past decades on the development of alternative methods that fully bypass animal testing or so-called new approach methodologies. These new approach methodologies range from simple monolayer cultures of individual primary or stem cells all up to bioprinted 3D organoids and microfluidic chips that recapitulate the complex cellular architecture of organs. Other approaches applied in life sciences in space research contribute to the reduction of animal experimentation. These include methods to mimic space conditions on Earth, such as microgravity and radiation simulators, as well as tools to support the processing, analysis or application of testing results obtained in life sciences in space research, including systems biology, live-cell, high-content and real-time analysis, high-throughput analysis, artificial intelligence and digital twins. The present paper provides an in-depth overview of such methods to replace or reduce animal testing in life sciences in space research.more » « less
- 
            Background Organ‐on‐chip technology has accelerated in vitro preclinical research of the vascular system, and a key strength of this platform is its promise to impact personalized medicine by providing a primary human cell–culture environment where endothelial cells are directly biopsied from individual tissue or differentiated through stem cell biotechniques. However, these methods are difficult to adopt in laboratories, and often result in impurity and heterogeneity of cells. This limits the power of organ‐chips in making accurate physiological predictions. In this study, we report the use of blood‐derived endothelial cells as alternatives to primary and induced pluripotent stem cell–derived endothelial cells. Methods and Results Here, the genotype, phenotype, and organ‐chip functional characteristics of blood‐derived outgrowth endothelial cells were compared against commercially available and most used primary endothelial cells and induced pluripotent stem cell–derived endothelial cells. The methods include RNA‐sequencing, as well as criterion standard assays of cell marker expression, growth kinetics, migration potential, and vasculogenesis. Finally, thromboinflammatory responses under shear using vessel‐chips engineered with blood‐derived endothelial cells were assessed. Blood‐derived endothelial cells exhibit the criterion standard hallmarks of typical endothelial cells. There are differences in gene expression profiles between different sources of endothelial cells, but blood‐derived cells are relatively closer to primary cells than induced pluripotent stem cell–derived. Furthermore, blood‐derived endothelial cells are much easier to obtain from individuals and yet, they serve as an equally effective cell source for functional studies and organ‐chips compared with primary cells or induced pluripotent stem cell–derived cells. Conclusions Blood‐derived endothelial cells may be used in preclinical research for developing more robust and personalized next‐generation disease models using organ‐on‐chips.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    