skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Do More with Less: Single-Model, Multi-Goal Architectures for Resource-Constrained Robots
Deep learning methods are widely used in robotic applications. By learning from prior experience, the robot can abstract knowledge of the environment, and use this knowledge to accomplish different goals, such as object search, frontier exploration, or scene understanding, with a smaller amount of resources than might be needed without that knowledge. Most existing methods typically require a significant amount of sensing, which in turn has significant costs in terms of power consumption for acquisition and processing, and typically focus on models that are tuned for each specific goal, leading to the need to train, store and run each one separately. These issues are particularly important in a resource-constrained setting, such as with small-scale robots or during long-duration missions. We propose a single, multi-task deep learning architecture that takes advantage of the structure of the partial environment to predict different abstractions of the environment (thus reducing the need for rich sensing), and to leverage these predictions to simultaneously achieve different high-level goals (thus sharing computation between goals). As an example application of the proposed architecture, we consider the specific example of a robot equipped with a 2-D laser scanner and an object detector, tasked with searching for an object (such as an exit) in a residential building while constructing a topological map that can be used for future missions. The prior knowledge of the environment is encoded using a U-Net deep network architecture. In this context, our work leads to an object search algorithm that is complete, and that outperforms a more traditional frontier-based approach. The topological map we produce uses scene trees to qualitatively represent the environment as a graph at a fraction of the cost of existing SLAM-based solutions. Our results demonstrate that it is possible to extract multi-task semantic information that is useful for navigation and mapping directly from bare-bone, non-semantic measurements.  more » « less
Award ID(s):
2212051
PAR ID:
10512587
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proceedings of the IEEERSJ International Conference on Intelligent Robots and Systems
ISSN:
2153-0858
ISBN:
978-1-6654-9190-7
Page Range / eLocation ID:
1940 to 1946
Format(s):
Medium: X
Location:
Detroit, MI, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes a bandwidth tunable technique for real-time probabilistic scene modeling and mapping to enable co-robotic exploration in communication constrained environments such as the deep sea. The parameters of the system enable the user to characterize the scene complexity represented by the map, which in turn determines the bandwidth requirements. The approach is demonstrated using an underwater robot that learns an unsupervised scene model of the environment and then uses this scene model to communicate the spatial distribution of various high-level semantic scene constructs to a human operator. Preliminary experiments in an artificially constructed tank environment, as well as simulated missions over a 10m x 10m coral reef using real data, show the tunability of the maps to different bandwidth constraints and science interests. To our knowledge this is the first paper to quantify how the free parameters of the unsupervised scene model impact both the scientific utility of and bandwidth required to communicate the resulting scene model. 
    more » « less
  2. We consider the problem of time-limited robotic exploration in previously unseen environments where exploration is limited by a predefined amount of time. We propose a novel exploration approach using learning-augmented model-based planning. We generate a set of sub goals associated with frontiers on the current map and derive a Bellman Equation for exploration with these subgoals. Visual sensing and advances in semantic mapping of indoor scenes are exploited for training a deep convolutional neural network to estimate properties associated with each frontier: the expected unobserved area beyond the frontier and the expected time steps (discretized actions) required to explore it. The proposed model-based planner is guaranteed to explore the whole scene if time permits. We thoroughly evaluate our approach on a large-scale pseudo-realistic indoor dataset (Matterport3D) with the Habitat simulator. We compare our approach with classical and more recent RL-based exploration methods. Our approach surpasses the greedy strategies by 2.1% and the RL-based exploration methods by 8.4% in terms of coverage. 
    more » « less
  3. We present the Semantic Robot Programming (SRP) paradigm as a convergence of robot programming by demonstration and semantic mapping. In SRP, a user can directly program a robot manipulator by demonstrating a snapshot of their intended goal scene in workspace. The robot then parses this goal as a scene graph comprised of object poses and inter-object relations, assuming known object geometries. Task and motion planning is then used to realize the user’s goal from an arbitrary initial scene configuration. Even when faced with different initial scene configurations, SRP enables the robot to seamlessly adapt to reach the user’s demonstrated goal. For scene perception, we propose the Discriminatively-Informed Generative Estimation of Scenes and Transforms (DIGEST) method to infer the initial and goal states of the world from RGBD images. The efficacy of SRP with DIGEST perception is demonstrated for the task of tray-setting with a Michigan Progress Fetch robot. Scene perception and task execution are evaluated with a public household occlusion dataset and our cluttered scene dataset. 
    more » « less
  4. Humans often use natural language instructions to control and interact with robots for task execution. This poses a big challenge to robots that need to not only parse and understand human instructions but also realise semantic understanding of an unknown environment and its constituent elements. To address this challenge, this study presents a vision-language model (VLM)-driven approach to scene understanding of an unknown environment to enable robotic object manipulation. Given language instructions, a pretrained vision-language model built on open-sourced Llama2-chat (7B) as the language model backbone is adopted for image description and scene understanding, which translates visual information into text descriptions of the scene. Next, a zero-shot-based approach to fine-grained visual grounding and object detection is developed to extract and localise objects of interest from the scene task. Upon 3D reconstruction and pose estimate establishment of the object, a code-writing large language model (LLM) is adopted to generate high-level control codes and link language instructions with robot actions for downstream tasks. The performance of the developed approach is experimentally validated through table-top object manipulation by a robot. 
    more » « less
  5. We present a filtering-based method for semantic mapping to simultaneously detect objects and localize their 6 degree-of-freedom pose. For our method, called Contextual Temporal Mapping (or CT-Map), we represent the semantic map as a belief over object classes and poses across an observed scene. Inference for the semantic mapping problem is then modeled in the form of a Conditional Random Field (CRF). CT-Map is a CRF that considers two forms of relationship potentials to account for contextual relations between objects and temporal consistency of object poses, as well as a measurement potential on observations. A particle filtering algorithm is then proposed to perform inference in the CT-Map model. We demonstrate the efficacy of the CT-Map method with a Michigan Progress Fetch robot equipped with a RGB-D sensor. Our results demonstrate that the particle filtering based inference of CT-Map provides improved object detection and pose estimation with respect to baseline methods that treat observations as independent samples of a scene. 
    more » « less