skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sex-specific cardiovascular risk factors in the UK Biobank
The lack of sex-specific cardiovascular disease criteria contributes to the underdiagnosis of women compared to that of men. For more than half a century, the Framingham Risk Score has been the gold standard to estimate an individual’s risk of developing cardiovascular disease based on the age, sex, cholesterol levels, blood pressure, diabetes status, and the smoking status. Now, machine learning can offer a much more nuanced insight into predicting the risk of cardiovascular diseases. The UK Biobank is a large database that includes traditional risk factors and tests related to the cardiovascular system: magnetic resonance imaging, pulse wave analysis, electrocardiograms, and carotid ultrasounds. Here, we leverage 20,542 datasets from the UK Biobank to build more accurate cardiovascular risk models than the Framingham Risk Score and quantify the underdiagnosis of women compared to that of men. Strikingly, for a first-degree atrioventricular block and dilated cardiomyopathy, two conditions with non-sex-specific diagnostic criteria, our study shows that women are under-diagnosed 2× and 1.4× more than men. Similarly, our results demonstrate the need for sex-specific criteria in essential primary hypertension and hypertrophic cardiomyopathy. Our feature importance analysis reveals that out of the top 10 features across three sexes and four disease categories, traditional Framingham factors made up between 40% and 50%; electrocardiogram, 30%–33%; pulse wave analysis, 13%–23%; and magnetic resonance imaging and carotid ultrasound, 0%–10%. Improving the Framingham Risk Score by leveraging big data and machine learning allows us to incorporate a wider range of biomedical data and prediction features, enhance personalization and accuracy, and continuously integrate new data and knowledge, with the ultimate goal to improve accurate prediction, early detection, and early intervention in cardiovascular disease management. Our analysis pipeline and trained classifiers are freely available at https://github.com/LivingMatterLab/CardiovascularDiseaseClassification.  more » « less
Award ID(s):
2320933
PAR ID:
10512687
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Physiology
Volume:
15
ISSN:
1664-042X
Page Range / eLocation ID:
1339866
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tourette Syndrome (TS) is a complex neurodevelopmental disorder characterized by vocal and motor tics lasting more than a year. It is highly polygenic in nature with both rare and common previously associated variants. Epidemiological studies have shown TS to be correlated with other phenotypes, but large-scale phenome wide analyses in biobank level data have not been performed to date. In this study, we used the summary statistics from the latest meta-analysis of TS to calculate the polygenic risk score (PRS) of individuals in the UK Biobank data and applied a Phenome Wide Association Study (PheWAS) approach to determine the association of disease risk with a wide range of phenotypes. A total of 57 traits were found to be significantly associated with TS polygenic risk, including multiple psychosocial factors and mental health conditions such as anxiety disorder and depression. Additional associations were observed with complex non-psychiatric disorders such as Type 2 diabetes, heart palpitations, and respiratory conditions. Cross-disorder comparisons of phenotypic associations with genetic risk for other childhood-onset disorders (e.g.: attention deficit hyperactivity disorder [ADHD], autism spectrum disorder [ASD], and obsessive-compulsive disorder [OCD]) indicated an overlap in associations between TS and these disorders. ADHD and ASD had a similar direction of effect with TS while OCD had an opposite direction of effect for all traits except mental health factors. Sex-specific PheWAS analysis identified differences in the associations with TS genetic risk between males and females. Type 2 diabetes and heart palpitations were significantly associated with TS risk in males but not in females, whereas diseases of the respiratory system were associated with TS risk in females but not in males. This analysis provides further evidence of shared genetic and phenotypic architecture of different complex disorders. 
    more » « less
  2. ImportanceBody mass index (BMI; calculated as weight in kilograms divided by height in meters squared) is a commonly used estimate of obesity, which is a complex trait affected by genetic and lifestyle factors. Marked weight gain and loss could be associated with adverse biological processes. ObjectiveTo evaluate the association between BMI variability and incident cardiovascular disease (CVD) events in 2 distinct cohorts. Design, Setting, and ParticipantsThis cohort study used data from the Million Veteran Program (MVP) between 2011 and 2018 and participants in the UK Biobank (UKB) enrolled between 2006 and 2010. Participants were followed up for a median of 3.8 (5th-95th percentile, 3.5) years. Participants with baseline CVD or cancer were excluded. Data were analyzed from September 2022 and September 2023. ExposureBMI variability was calculated by the retrospective SD and coefficient of variation (CV) using multiple clinical BMI measurements up to the baseline. Main Outcomes and MeasuresThe main outcome was incident composite CVD events (incident nonfatal myocardial infarction, acute ischemic stroke, and cardiovascular death), assessed using Cox proportional hazards modeling after adjustment for CVD risk factors, including age, sex, mean BMI, systolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, smoking status, diabetes status, and statin use. Secondary analysis assessed whether associations were dependent on the polygenic score of BMI. ResultsAmong 92 363 US veterans in the MVP cohort (81 675 [88%] male; mean [SD] age, 56.7 [14.1] years), there were 9695 Hispanic participants, 22 488 non-Hispanic Black participants, and 60 180 non-Hispanic White participants. A total of 4811 composite CVD events were observed from 2011 to 2018. The CV of BMI was associated with 16% higher risk for composite CVD across all groups (hazard ratio [HR], 1.16; 95% CI, 1.13-1.19). These associations were unchanged among subgroups and after adjustment for the polygenic score of BMI. The UKB cohort included 65 047 individuals (mean [SD] age, 57.30 (7.77) years; 38 065 [59%] female) and had 6934 composite CVD events. Each 1-SD increase in BMI variability in the UKB cohort was associated with 8% increased risk of cardiovascular death (HR, 1.08; 95% CI, 1.04-1.11). Conclusions and RelevanceThis cohort study found that among US veterans, higher BMI variability was a significant risk marker associated with adverse cardiovascular events independent of mean BMI across major racial and ethnic groups. Results were consistent in the UKB for the cardiovascular death end point. Further studies should investigate the phenotype of high BMI variability. 
    more » « less
  3. null (Ed.)
    Background: Both lifestyle and genetic factors confer risk for cardiovascular diseases, type 2 diabetes, and dyslipidemia. However, the interactions between these 2 groups of risk factors were not comprehensively understood due to previous poor estimation of genetic risk. Here we set out to develop enhanced polygenic risk scores (PRS) and systematically investigate multiplicative and additive interactions between PRS and lifestyle for coronary artery disease, atrial fibrillation, type 2 diabetes, total cholesterol, triglyceride, and LDL-cholesterol. Methods: Our study included 276 096 unrelated White British participants from the UK Biobank. We investigated several PRS methods (P+T, LDpred, PRS continuous shrinkage, and AnnoPred) and showed that AnnoPred achieved consistently improved prediction accuracy for all 6 diseases/traits. With enhanced PRS and combined lifestyle status categorized by smoking, body mass index, physical activity, and diet, we investigated both multiplicative and additive interactions between PRS and lifestyle using regression models. Results: We observed that healthy lifestyle reduced disease incidence by similar multiplicative magnitude across different PRS groups. The absolute risk reduction from lifestyle adherence was, however, significantly greater in individuals with higher PRS. Specifically, for type 2 diabetes, the absolute risk reduction from lifestyle adherence was 12.4% (95% CI, 10.0%–14.9%) in the top 1% PRS versus 2.8% (95% CI, 2.3%–3.3%) in the bottom PRS decile, leading to a ratio of >4.4. We also observed a significant interaction effect between PRS and lifestyle on triglyceride level. Conclusions: By leveraging functional annotations, AnnoPred outperforms state-of-the-art methods on quantifying genetic risk through PRS. Our analyses based on enhanced PRS suggest that individuals with high genetic risk may derive similar relative but greater absolute benefit from lifestyle adherence. 
    more » « less
  4. Abstract Objective Modern healthcare data reflect massive multi-level and multi-scale information collected over many years. The majority of the existing phenotyping algorithms use case–control definitions of disease. This paper aims to study the time to disease onset and progression and identify the time-varying risk factors that drive them. Materials and Methods We developed an algorithmic approach to phenotyping the incidence of diseases by consolidating data sources from the UK Biobank (UKB), including primary care electronic health records (EHRs). We focused on defining events, event dates, and their censoring time, including relevant terms and existing phenotypes, excluding generic, rare, or semantically distant terms, forward-mapping terminology terms, and expert review. We applied our approach to phenotyping diabetes complications, including a composite cardiovascular disease (CVD) outcome, diabetic kidney disease (DKD), and diabetic retinopathy (DR), in the UKB study. Results We identified 49 049 participants with diabetes. Among them, 1023 had type 1 diabetes (T1D), and 40 193 had type 2 diabetes (T2D). A total of 23 833 diabetes subjects had linked primary care records. There were 3237, 3113, and 4922 patients with CVD, DKD, and DR events, respectively. The risk prediction performance for each outcome was assessed, and our results are consistent with the prediction area under the ROC (receiver operating characteristic) curve (AUC) of standard risk prediction models using cohort studies. Discussion and Conclusion Our publicly available pipeline and platform enable streamlined curation of incidence events, identification of time-varying risk factors underlying disease progression, and the definition of a relevant cohort for time-to-event analyses. These important steps need to be considered simultaneously to study disease progression. 
    more » « less
  5. Diabetes-related complications reflect longstanding damage to small and large vessels throughout the body. In addition to the duration of diabetes and poor glycemic control, genetic factors are important contributors to the variability in the development of vascular complications. Early heritability studies found strong familial clustering of both macrovascular and microvascular complications. However, they were limited by small sample sizes and large phenotypic heterogeneity, leading to less accurate estimates. We take advantage of two independent studies—UK Biobank and the Action to Control Cardiovascular Risk in Diabetes trial—to survey the single nucleotide polymorphism heritability for diabetes microvascular (diabetic kidney disease and diabetic retinopathy) and macrovascular (cardiovascular events) complications. Heritability for diabetic kidney disease was estimated at 29%. The heritability estimate for microalbuminuria ranged from 24 to 60% and was 41% for macroalbuminuria. Heritability estimates of diabetic retinopathy ranged from 6 to 33%, depending on the phenotype definition. More severe diabetes retinopathy possessed higher genetic contributions. We show, for the first time, that rare variants account for much of the heritability of diabetic retinopathy. This study suggests that a large portion of the genetic risk of diabetes complications is yet to be discovered and emphasizes the need for additional genetic studies of diabetes complications. 
    more » « less