Abstract High-order harmonic generation (HHG) has become an indispensable process for generating attosecond pulse trains and single attosecond pulses used in the observation of nuclear and electronic motion. As such, improved control of the HHG process is desirable, and one such possibility for this control is through the use of structured laser pulses. We present numerical results from solving the one-dimensional time-dependent Schrödinger equation for HHG from hydrogen using Airy and Gaussian pulses that differ only in their spectral phase. Airy pulses have identical power spectra to Gaussian pulses, but different spectral phases and temporal envelopes. We show that the use of Airy pulses results in less ground state depletion compared to the Gaussian pulse, while maintaining harmonic yield and cutoff. Our results demonstrate that Airy pulses with higher intensity can produce similar HHG spectra to lower intensity Gaussian pulses without depleting the ground state. The different temporal envelopes of the Gaussian and Airy pulses lead to changes in the dynamics of the HHG process, altering the time-dependence of the ground state population and the emission times of the high harmonics. Graphical abstract
more »
« less
High-order harmonic generation from a thin film crystal perturbed by a quasi-static terahertz field
Abstract Studies of laser-driven strong field processes subjected to a (quasi-)static field have been mainly confined to theory. Here we provide an experimental realization by introducing a bichromatic approach for high harmonic generation (HHG) in a dielectric that combines an intense 70 femtosecond duration mid-infrared driving field with a weak 2 picosecond period terahertz (THz) dressing field. We address the physics underlying the THz field induced static symmetry breaking and its consequences on the efficient production/suppression of even-/odd-order harmonics, and demonstrate the ability to probe the HHG dynamics via the modulation of the harmonic distribution. Moreover, we report a delay-dependent even-order harmonic frequency shift that is proportional to the time derivative of the THz field. This suggests a limitation of the static symmetry breaking interpretation and implies that the resultant attosecond bursts are aperiodic, thus providing a frequency domain probe of attosecond transients while opening opportunities in precise attosecond pulse shaping.
more »
« less
- Award ID(s):
- 2011876
- PAR ID:
- 10513005
- Publisher / Repository:
- springer
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Page Range / eLocation ID:
- 2603
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract High harmonic generation (HHG) opens a window on the fundamental science of strong-field light-mater interaction and serves as a key building block for attosecond optics and metrology. Resonantly enhanced HHG from hot spots in nanostructures is an attractive route to overcoming the well-known limitations of gases and bulk solids. Here, we demonstrate a nanoscale platform for highly efficient HHG driven by intense mid-infrared laser pulses: an ultra-thin resonant gallium phosphide (GaP) metasurface. The wide bandgap and the lack of inversion symmetry of the GaP crystal enable the generation of even and odd harmonics covering a wide range of photon energies between 1.3 and 3 eV with minimal reabsorption. The resonantly enhanced conversion efficiency facilitates single-shot measurements that avoid material damage and pave the way to study the controllable transition between perturbative and non-perturbative regimes of light-matter interactions at the nanoscale.more » « less
-
High-harmonic generation (HHG) has been established as a powerful tool for studying structure and dynamics of quantum systems in gas and solid phases. To date, only a few studies have extended HHG spectroscopy to liquids, and much remains unresolved concerning the information that can be extracted from HHG spectra about the local liquid environment and the potential of HHG as a nonlinear probe of solvation dynamics. In this work, we investigate HHG in liquid binary solutions consisting of mixtures of aromatic benzene derivatives solvated in methanol. We observe evidence of a localized solvation structure that is imprinted on the harmonic spectra in the form of a strongly suppressed harmonic order, and an overall reduction of the total harmonic yield. We characterize this behavior as a function of laser parameters, concentration, and other halogenated benzene derivatives in methanol solution. Guided by theory, we interpret the results in terms of a localized solvation shell that is formed in specific solutions and acts like a local scattering barrier in the HHG process. This work demonstrates the potential of high-harmonic spectroscopy in liquids to extract detailed information about the structure and dynamics of solvation while expanding our understanding of the fundamental mechanism of HHG in systems with short-range order.more » « less
-
Attosecond pulses formed by high order harmonics (HHs) of an infrared (IR) laser field is a powerful tool for studying and controlling ultrafast dynamics of electrons in atoms, molecules and solids at its intrinsic time-scale. However, in the X-ray range the energy of attosecond pulses is rather limited. Their amplification is an important but very challenging problem since none of the existing amplifiers can support the corresponding PHz bandwidth. In our previous work [1] we proposed a method for the attosecond pulse amplification in hydrogen-like active medium of a recombination plasma-based X-ray laser dressed by a replica of the fundamental frequency IR field used for the HH generation. Due to the IRfield-induced sub-laser-cycle Stark shift and splitting of the lasing energy levels the gain of the active medium is redistributed over the combination frequencies, separated from the resonance by even multiples of the frequency of the IR field. If the incident HHs forming an attosecond pulse train are tuned in resonance with the induced gain lines and the active plasma medium is strongly dispersive for the modulating IR field, then during the amplification the relative phases of harmonics and (under the optimal choice of the IR field strength) the shape of the amplified pulses will be preserved. In the present work we show the possibility of boosting the efficiency of HH amplification by modulating the active medium of an X-ray laser with the second harmonic of the fundamental frequency IR field. We show that under the action of a laser field (with arbitrary frequency) the gain redistribution occurs not only over the even combination frequencies discussed in [1], but also over the odd frequencies separated from the resonance by odd multiples of the laser frequency. Besides, nearly half of the medium gain is contained in the even induced gain lines, and nearly half in the odd. If the modulating field is the second harmonic of the IR field, used for the generation the HHs and attosecond pulses, then the seeding HHs can be tuned in resonance with both even and odd gain lines simultaneously, which will make the overall gain much higher as compared to the previously considered case of the fundamental frequency modulating field (when only the even gain lines play the role). By the example of the C5+ X-ray laser with 3.38 nm wavelength of the inverted transition we show the possibility of increasing the efficiency of 430 as pulse amplification by 8.5 times when the active medium is modulated with the second harmonic of the fundamental frequency IR field with wavelength 2.1 µm.more » « less
-
Explicit formula for high-order sideband polarization by extreme tailoring of Feynman path integralsHigh-order sideband generation (HSG), as an analog of the interband processes in high-harmonic generation (HHG) in solids, is a nonperturbative nonlinear optical phenomenon in semiconductors that are simultaneously driven by a relatively weak near-infrared (NIR) laser and a sufficiently strong terahertz (THz) field. We derive an explicit formula for sideband polarization vectors in a prototypical two-band model based on the saddle-point method. Our formula connects the sideband amplitudes with the laser-field parameters, electronic structures, and nonequilibrium dephasing rates in a highly nontrivial manner. Our results indicate the possibility of extracting information on band structures and dephasing rates from high-order sideband generation experiments with simple algebraic calculations. We also expect our approach to be useful on the quantitative understanding of the interband HHG.more » « less
An official website of the United States government

