skip to main content


Title: Affective polarization and dynamics of information spread in online networks
Abstract

Members of different political groups not only disagree about issues but also dislike and distrust each other. While social media can amplify this emotional divide—called affective polarization by political scientists—there is a lack of agreement on its strength and prevalence. We measure affective polarization on social media by quantifying the emotions and toxicity of reply interactions. We demonstrate that, as predicted by affective polarization, interactions between users with same ideology (in-group replies) tend to be positive, while interactions between opposite-ideology users (out-group replies) are characterized by negativity and toxicity. Second, we show that affective polarization generalizes beyond the in-group/out-group dichotomy and can be considered a structural property of social networks. Specifically, we show that emotions vary with network distance between users, with closer interactions eliciting positive emotions and more distant interactions leading to anger, disgust, and toxicity. Finally, we show that similar information exhibits different dynamics when spreading in emotionally polarized groups. These findings are consistent across diverse datasets spanning discussions on topics such as the COVID-19 pandemic and abortion in the US. Our research provides insights into the complex social dynamics of affective polarization in the digital age and its implications for political discourse.

 
more » « less
NSF-PAR ID:
10513055
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Complexity
Volume:
1
Issue:
1
ISSN:
2731-8753
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While exposure to diverse viewpoints may reduce polarization, it can also have a backfire effect and exacerbate polarization when the discussion is adversarial. Here, we examine the question whether intergroup interactions around important events affect polarization between majority and minority groups in social networks. We compile data on the religious identity of nearly 700,000 Indian Twitter users engaging in COVID-19-related discourse during 2020. We introduce a new measure for an individual's group conformity based on contextualized embeddings of tweet text, which helps us assess polarization between religious groups. We then use a meta-learning framework to examine heterogeneous treatment effects of intergroup interactions on an individual's group conformity in the light of communal, political, and socio-economic events. We find that for political and social events, intergroup interactions reduce polarization. This decline is weaker for individuals at the extreme who already exhibit high conformity to their group. In contrast, during communal events, intergroup interactions can increase group conformity. Finally, we decompose the differential effects across religious groups in terms of emotions and topics of discussion. The results show that the dynamics of religious polarization are sensitive to the context and have important implications for understanding the role of intergroup interactions. 
    more » « less
  2. Humanity for centuries has perfected skills of interpersonal interactions and evolved patterns that enable people to detect lies and deceiving behavior of others in face-to-face settings. Unprecedented growth of people’s access to mobile phones and social media raises an important question: How does this new technology influence people’s interactions and support the use of traditional patterns? In this article, we answer this question for homophily-driven patterns in social media. In our previous studies, we found that, on a university campus, changes in student opinions were driven by the desire to hold popular opinions. Here, we demonstrate that the evolution of online platform-wide opinion groups is driven by the same desire. We focus on two social media: Twitter and Parler, on which we tracked the political biases of their users. On Parler, an initially stable group of Right-biased users evolved into a permanent Right-leaning echo chamber dominating weaker, transient groups of members with opposing political biases. In contrast, on Twitter, the initial presence of two large opposing bias groups led to the evolution of a bimodal bias distribution, with a high degree of polarization. We capture the movement of users from the initial to final bias groups during the tracking period. We also show that user choices are influenced by side-effects of homophily. Users entering the platform attempt to find a sufficiently large group whose members hold political biases within the range sufficiently close to their own. If successful, they stabilize their biases and become permanent members of the group. Otherwise, they leave the platform. We believe that the dynamics of users’ behavior uncovered in this article create a foundation for technical solutions supporting social groups on social media and socially aware networks 
    more » « less
  3. Social media provides a critical communication platform for political figures, but also makes them easy targets for harassment. In this paper, we characterize users who adversarially interact with political figures on Twitter using mixed-method techniques. The analysis is based on a dataset of 400 thousand users' 1.2 million replies to 756 candidates for the U.S. House of Representatives in the two months leading up to the 2018 midterm elections. We show that among moderately active users, adversarial activity is associated with decreased centrality in the social graph and increased attention to candidates from the opposing party. When compared to users who are similarly active, highly adversarial users tend to engage in fewer supportive interactions with their own party's candidates and express negativity in their user profiles. Our results can inform the design of platform moderation mechanisms to support political figures countering online harassment. 
    more » « less
  4. Online misinformation is believed to have contributed to vaccine hesitancy during the Covid-19 pandemic, highlighting concerns about social media’s destabilizing role in public life. Previous research identified a link between political conservatism and sharing misinformation; however, it is not clear how partisanship affects how much misinformation people see online. As a result, we do not know whether partisanship drives exposure to misinformation or people selectively share misinformation despite being exposed to factual content. To address this question, we study Twitter discussions about the Covid-19 pandemic, classifying users along the political and factual spectrum based on the information sources they share. In addition, we quantify exposure through retweet interactions. We uncover partisan asymmetries in the exposure to misinformation: conservatives are more likely to see and share misinformation, and while users’ connections expose them to ideologically congruent content, the interactions between political and factual dimensions create conditions for the highly polarized users—hardline conservatives and liberals—to amplify misinformation. Overall, however, misinformation receives less attention than factual content and political moderates, the bulk of users in our sample, help filter out misinformation. Identifying the extent of polarization and how political ideology exacerbates misinformation can help public health experts and policy makers improve their messaging. 
    more » « less
  5. Kacprzyk, Janusz ; Pal, Nikhil R ; Perez, Rafael B ; Corchado, Emilio S ; Hagras, Hani ; Kóczy, László T ; Kreinovich, Vladik ; Lin, Chin-Teng ; Lu, Jie ; Melin, Patricia (Ed.)
    The COVID-19 pandemic was lived in real-time on social media. In the current project, we use machine learning to explore the relationship between COVID-19 cases and social media activity on Twitter. We were particularly interested in determining if Twitter activity can be used to predict COVID-19 surges. We also were interested in exploring features of social media, such as replies, to determine their promise for understanding the views of individual users. With the prevalence of mis/disinformation on social media, it is critical to develop a deeper and richer understanding of the relationship between social media and real-world events in order to detect and prevent future influence operations. In the current work, we explore the relationship between COVID-19 cases and social media activity (on Twitter) in three major United States cities with different geographical and political landscapes. We find that Twitter activity resulted in statistically significant correlations using the Granger causality test, with a lag of one week in all three cities. Similarly, the use of replies, which appear more likely to be generated by individual users, not bots or public relations operations, was also strongly correlated with the number of COVID-19 cases using the Granger causality test. Furthermore, we were able to build promising predictive models for the number of future COVID-19 cases using correlation data to select features for input to our models. In contrast, significant correlations were not identified when comparing the number of COVID-19 cases with mainstream media sources or with a sample of all US COVID-related tweets. We conclude that, even for an international event such as COVID-19, social media tracks closely with local conditions. We also suggest that replies can be a valuable feature within a machine learning task that is attempting to gauge the reactions of individual users. 
    more » « less