Renewable energy generation sources (RESs) are gaining increased popularity due to global efforts to reduce carbon emissions and mitigate effects of climate change. Planning and managing increasing levels of RESs, specifically solar photovoltaic (PV) generation sources is becoming increasingly challenging. Estimations of solar PV power generations provide situational awareness in distribution system operations. A digital twin (DT) can replicate PV plant behaviors and characteristics in a virtual platform, providing realistic solar PV estimations. Furthermore, neural networks, a popular paradigm of artificial intelligence may be used to adequately learn and replicate the relationship between input and output variables for data-driven DTs (DD-DTs). In this paper, DD-DTs are developed for Clemson University’s 1 MW solar PV plant located in South Carolina, USA to perform realistic solar PV power estimations. The DD-DTs are implemented utilizing multilayer perceptron (MLP) and Elman neural networks. Typical practical results for two DD-DT architectures are presented and validated.
more »
« less
Digital Twins for Creating Virtual Models of Solar Photovoltaic Plants
Amidst the challenges posed by the high penetration of distributed energy resources (DERs), particularly a number of distributed photovoltaic plants (DPVs), in modern electric power distribution systems (MEPDS), the integration of new technologies and frameworks become crucial for addressing operation, management, and planning challenges. Situational awareness (SA) and situational intelligence (SI) over multi-time scales is essential for enhanced and reliable PV power generation in MEPDS. In this paper, data-driven digital twins (DTs) are developed using AI paradigms to develop actual and/or virtual models of DPVs, These DTs are then applied for estimating and forecasting the power outputs of physical and virtual PV plants. Virtual weather stations are used to estimate solar irradiance and temperature at user-selected locations in a localized region, using inferences from physical weather stations. Three case studies are examined based on data availability: physical PV plant, hybrid PV plants, and virtual PV plants, generating realtime estimations and short-term forecasts of PV power production that can support distribution system studies and decision-making.
more »
« less
- Award ID(s):
- 2234032
- PAR ID:
- 10513116
- Publisher / Repository:
- IEEExplore
- Date Published:
- Journal Name:
- IEEE SSCI
- ISSN:
- 1558-058X
- Subject(s) / Keyword(s):
- AI, distributed energy resources, digital twin, power distribution systems, weather stations, virtual systems
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Distributed temperature sensing (DTS) uses Raman scatter from laser light pulsed through an optical fiber to observe temperature along a cable. Temperature resolution across broad scales (seconds to many months, and centimeters to kilometers) make DTS an attractive oceanographic tool. Although DTS is an established technology, oceanographic DTS observations are rare since significant deployment, calibration, and operational challenges exist in dynamic oceanographic environments. Here, results from an experiment designed to address likely oceanographic DTS configuration, calibration, and data processing challenges provide guidance for oceanographic DTS applications. Temperature error due to suboptimal calibration under difficult deployment conditions is quantified for several common scenarios. Alternative calibration, analysis, and deployment techniques that help mitigate this error and facilitate successful DTS application in dynamic ocean conditions are discussed.more » « less
-
Generally, the output power of the Photovoltaic (PV) panels is less than the nominal rating of the panel. On the other hand, the inverters of the PV systems are normally sized smaller than the nominal rating of the photovoltaic system. A typical PV to inverter power rating ratio is 1.2, which can be influenced by the weather condition. The main drawback is that during peak irradiance and optimal temperature situation, the peak power is generated at the PV, but the inverter is not sized for absorbing the whole power. This article develops a systematic method to calculate the optimal ratio between PV panel and inverter to absorb the maximum possible power with an optimal cost. This method uses the annual irradiance and temperature of the geographical region and extracts the power curves for a photovoltaic system in specific regions. Based on the distribution of the various weather conditions, the total possible power generation of the system is calculated. Then the possible extracted and lost power for different sizes of inverters are calculated to develop an efficiency function for the extracted power of the typical power system. This function is optimized considering the price of inverters and system. Both of conventional 1000 V PV system as well as recently developed 1500 V system for 480 VAC grid connection are studied and the effect of transformer in both case is investigated. The paper shows how 1500 V system is superior to its 1000 V counterpart.more » « less
-
Power systems with utility-scale solar photovoltaic (PV) can significantly influence the operating points (OPs) of synchronous generators, particularly during periods of high solar PV generation. A sudden drop in solar PV output due to cloud cover or other transient conditions will alter the generation of synchronous generators shifting their OPs. These shifted OPs can become a challenge for stability as the system may operate closer to its stability limits. If a disturbance occurs while the system is operating at the shifted OP, with reduced stability margins, it will be more vulnerable to increased oscillations, loss of synchronism of its generator(s) and system instability. This study introduces a scalable delta-automatic generation control (delta-AGC) logic method designed to address stability challenges arising from shifts in the OPs of synchronous generators during abrupt drops in PV generation. By temporarily adjusting the OPs of synchronous generators through modification of their participation factors (PFs) in the AGC logic dispatch, the proposed method enhances power system stability. The proposed delta-AGC logic method focuses on the optimal determination of delta-PFs in power systems with large number of generators, using the concept of coherency and employing a hierarchical optimization strategy that includes both inter-coherent and intra-coherent group optimization. Additionally, a new electromechanical oscillation index (EMOI), integrating both time response analysis (TRA) and frequency response analysis (FRA), is utilized as an online situational awareness tool (SAT) for optimizing the system’s stability under various conditions. This online SAT has been implemented in a decentralized manner at the area level, limiting wide-area communication overheads and any cybersecurity concerns. The delta-AGC logic method is illustrated on a modified IEEE 68 bus system, incorporating large utility-scale solar PV plants, and is validated through real-time simulation. Various cases, including high-loading conditions with and without power system stabilizers, conventional AGC logic, and delta-AGC logic, are carried out to evaluate the effectiveness of the proposed delta-AGC logic method. The results illustrate the performance and benefits of the delta-AGC logic method, highlighting its potential to significantly enhance power system stability.more » « less
-
Barambones, Oscar (Ed.)Accurate quantification of uncertainty in solar photovoltaic (PV) generation forecasts is imperative for the efficient and reliable operation of the power grid. In this paper, a data-driven non-parametric probabilistic method based on the Naïve Bayes (NB) classification algorithm and Dempster–Shafer theory (DST) of evidence is proposed for day-ahead probabilistic PV power forecasting. This NB-DST method extends traditional deterministic solar PV forecasting methods by quantifying the uncertainty of their forecasts by estimating the cumulative distribution functions (CDFs) of their forecast errors and forecast variables. The statistical performance of this method is compared with the analog ensemble method and the persistence ensemble method under three different weather conditions using real-world data. The study results reveal that the proposed NB-DST method coupled with an artificial neural network model outperforms the other methods in that its estimated CDFs have lower spread, higher reliability, and sharper probabilistic forecasts with better accuracy.more » « less
An official website of the United States government

