skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Easy-plane spin Hall oscillator
Abstract Spin Hall oscillators (SHOs) based on bilayers of a ferromagnet (FM) and a non-magnetic heavy metal (HM) are electrically tunable nanoscale microwave signal generators. Achieving high output power in SHOs requires driving large-amplitude magnetization dynamics by a direct spin Hall current. Here we present an SHO engineered to have easy-plane magnetic anisotropy oriented normal to the bilayer plane, enabling large-amplitude easy-plane dynamics driven by spin Hall current. Our experiments and micromagnetic simulations demonstrate that the easy-plane anisotropy can be achieved by tuning the magnetic shape anisotropy and perpendicular magnetic anisotropy in a nanowire SHO, leading to a significant enhancement of the generated microwave power. The easy-plane SHO experimentally demonstrated here is an ideal candidate for realization of a spintronic spiking neuron. Our results provide an approach to design of high-power SHOs for wireless communications, neuromorphic computing, and microwave assisted magnetic recording.  more » « less
Award ID(s):
2213690
PAR ID:
10513159
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Communications Physics
Volume:
6
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Non‐collinear antiferromagnets (AFMs) are an exciting new platform for studying intrinsic spin Hall effects (SHEs), phenomena that arise from the materials’ band structure, Berry phase curvature, and linear response to an external electric field. In contrast to conventional SHE materials, symmetry analysis of non‐collinear antiferromagnets does not forbid non‐zero longitudinal and out‐of‐plane spin currents with polarization and predicts an anisotropy with current orientation to the magnetic lattice. Here, multi‐component out‐of‐plane spin Hall conductivities are reported in L12‐ordered antiferromagnetic PtMn3thin films that are uniquely generated in the non‐collinear state. The maximum spin torque efficiencies (ξ  =JS /Je ≈ 0.3) are significantly larger than in Pt (ξ  ≈  0.1). Additionally, the spin Hall conductivities in the non‐collinear state exhibit the predicted orientation‐dependent anisotropy, opening the possibility for new devices with selectable spin polarization. This work demonstrates symmetry control through the magnetic lattice as a pathway to tailored functionality in magnetoelectronic systems. 
    more » « less
  2. Abstract Second-harmonic Hall voltage (SHV) measurement method has been widely used to characterize the strengths of spin–orbit torques (SOTs) in heavy metal/ferromagnet thin films saturated in the single-domain regime. Here, we show that the magnetic anisotropy of a W/Pt/Co trilayer can be robustly tuned from in-plane to out-of-plane by varying W, Pt, or Co thicknesses. Moreover, in samples with easy-cone anisotropy, SHV measurements exhibit anomalous ‘humps’ in the multidomain regime accessed by applying a nearly out-of-plane external magnetic field. These hump features can only be explained as a result of the formation of Néel-type domain walls, efficiently driven by nevertheless small SOTs in this double heavy metal heterostructure with canceling spin Hall angles. 
    more » « less
  3. Abstract Ferrimagnetic oxide thin films are important material platforms for spintronic devices. Films grown on low symmetry orientations such as (110) exhibit complex anisotropy landscapes that can provide insight into novel phenomena such as spin‐torque auto‐oscillation and spin superfluidity. Using spin‐Hall magnetoresistance measurements, the in‐plane (IP) and out‐of‐plane (OOP) uniaxial anisotropy energies are determined for a thickness series (5–50 nm) of europium iron garnet (EuIG) and thulium iron garnet (TmIG) films epitaxially grown on a gadolinium gallium substrate with (110) orientation and capped with Pt. Pt/EuIG/GGG exhibits an (001) easy plane of magnetization perpendicular to the substrate, whereas Pt/TmIG/GGG exhibits an (001) hard plane of magnetization perpendicular to the substrate with an IP easy axis. Both IP and OOP surface anisotropy energies comparable in magnitude to the bulk anisotropy are observed. The temperature dependence of the surface anisotropies is consistent with first‐order predictions of a simplified Néel surface anisotropy model. By taking advantage of the thickness and temperature dependence demonstrated in these ferrimagnetic oxides grown on the low symmetry (110) orientations, the complex anisotropy landscapes can be tuned to act as a platform to explore rich spin textures and dynamics. 
    more » « less
  4. Spin-Hall nano-oscillators (SHNOs) are nanoscale spintronic devices that generate high-frequency (GHz) microwave signals useful for various applications, such as neuromorphic computing and creating Ising systems. Recent research demonstrated that hybrid SHNOs consisting of a ferromagnetic metal (permalloy) and lithium ferrite-based (LAFO) insulating ferrimagnetic thin films have advantages in having lower auto-oscillation threshold currents (Ith) and generating larger microwave output power, making this hybrid structure an attractive candidate for spintronic applications. It is essential to understand how the tunable material properties of LAFO, e.g., its thickness, perpendicular magnetic anisotropy (Ku,LAFO), and saturation magnetization (Ms,LAFO), affect magnetic dynamics in hybrid SHNOs. We investigate the change in Ith and the output power of the device as the LAFO parameters vary. We find the Ith does not depend strongly on these parameters, but the output power has a highly nonlinear dependence on Ms,LAFO and Ku,LAFO. We further investigate the nature of the excited spin-wave modes as a function of Ku,LAFO and determine a critical value of Ku,LAFO above which propagating spin-waves are excited. Our simulation results provide a roadmap for designing hybrid SHNOs to achieve targeted spin excitation characteristics. 
    more » « less
  5. Abstract Rare‐earth iron garnets have distinctive spin‐wave (SW) properties such as low magnetic damping and long SW coherence length making them ideal candidates for magnonics. Among them, thulium iron garnet (TmIG) is a ferrimagnetic insulator with unique magnetic properties including perpendicular magnetic anisotropy (PMA) and topological hall effect at room temperature when grown down to a few nanometers, extending its application to magnon spintronics. Here, the SW propagation properties of TmIG films (thickness of 7–34 nm) grown on GGG and sGGG substrates are studied at room temperature. Magnetic measurements show in‐plane magnetic anisotropy for TmIG films grown on GGG and out‐of‐plane magnetic anisotropy for films grown on sGGG substrates with PMA. SW electrical transmission spectroscopy measurements on TmIG/GGG films unveil magnetostatic surface spin waves (MSSWs) propagating up to 80 µm with a SW group velocity of 2–8 km s−1. Intriguingly, these MSSWs exhibit nonreciprocal propagation, opening new applications in SW functional devices. TmIG films grown on sGGG substrates exhibit forward volume spin waves with a reciprocal propagation behavior up to 32 µm. 
    more » « less