skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Beyond neural scaling laws: beating power law scaling via data pruning
Award ID(s):
1845166
PAR ID:
10513497
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
NeurIPS
Date Published:
Journal Name:
NeurIPS
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Throughout the cyberinfrastructure community there are a large range of resources available to train faculty and young scholars about successful utilization of computational resources for research. The challenge that the community faces is that training materi- als abound, but they can be difficult to find, and often have little information about the quality or relevance of offerings. Building on existing software technology, we propose to build a way for the community to better share and find training and education materials through a federated training repository. In this scenario, organizations and authors retain physical and legal ownership of their materials by sharing only catalog information, organizations can refine local portals to use the best and most appropriate ma- terials from both local and remote sources, and learners can take advantage of materials that are reviewed and described more clearly. In this paper, we introduce the HPC ED pilot project, a federated training repository that is designed to allow resource providers, campus portals, schools, and other institutions to both incorporate training from multiple sources into their own familiar interfaces and to publish their local training materials. 
    more » « less
  2. Virtual Reality (VR) telepresence platforms are being challenged to support live performances, sporting events, and conferences with thousands of users across seamless virtual worlds. Current systems have struggled to meet these demands which has led to high-profile performance events with groups of users isolated in parallel sessions. The core difference in scaling VR environments compared to classic 2D video content delivery comes from the dynamic peer-to-peer spatial dependence on communication. Users have many pair-wise interactions that grow and shrink as they explore spaces. In this paper, we discuss the challenges of VR scaling and present an architecture that supports hundreds of users with spatial audio and video in a single virtual environment. We leverage the property of \textit{spatial locality} with two key optimizations: (1) a Quality of Service (QoS) scheme to prioritize audio and video traffic based on users' locality, and (2) a resource manager that allocates client connections across multiple servers based on user proximity within the virtual world. Through real-world deployments and extensive evaluations under real and simulated environments, we demonstrate the scalability of our platform while showing improved QoS compared with existing approaches. 
    more » « less