skip to main content

Title: Low Gilbert damping and high perpendicular magnetic anisotropy in an Ir-coupled L10-FePd-based synthetic antiferromagnet

Thin ferromagnetic films possessing perpendicular magnetic anisotropy derived from the crystal lattice can deliver the requisite magnetocrystalline anisotropy density for thermally stable magnetic memory and logic devices at the single-digit-nm lateral size. Here, we demonstrate that an epitaxial synthetic antiferromagnet can be formed from L10FePd, a candidate material with large magnetocrystalline anisotropy energy, through insertion of an ultrathin Ir spacer. Tuning of the Ir spacer thickness leads to synthetic antiferromagnetically coupled FePd layers, with an interlayer exchange field upwards of 0.6 T combined with a perpendicular magnetic anisotropy energy of 0.95 MJ/m3and a low Gilbert damping of 0.01. Temperature-dependent ferromagnetic resonance measurements show that the Gilbert damping is mostly insensitive to temperature over a range of 20 K up to 300 K. In FePd|Ir|FePd trilayers with lower interlayer exchange coupling, optic and acoustic dynamic ferromagnetic resonance modes are explored as a function of temperature. The ability to engineer low damping and large interlayer exchange coupling in FePd|Ir|FePd synthetic antiferromagnets with high perpendicular magnetic anisotropy could prove useful for high performance spintronic devices.

more » « less
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Iron garnets that combine robust perpendicular magnetic anisotropy (PMA) with low Gilbert damping are desirable for studies of magnetization dynamics as well as spintronic device development. This paper reports the magnetic properties of low‐damping bismuth‐substituted iron garnet thin films (Bi0.8Y2.2Fe5O12) grown on a series of single‐crystal gallium garnet substrates. The anisotropy is dominated by magnetoelastic and growth‐induced contributions. Both stripe and triangular domains form during field cycling of PMA films, with triangular domains evident in films with higher PMA. Ferromagnetic resonance measurements show damping as low as 1.3 × 10−4with linewidths of 2.7 to 5.0 mT. The lower bound for the spin‐mixing conductance of BiYIG/Pt bilayers is similar to that of other iron garnet/Pt bilayers.

    more » « less
  2. Abstract

    Magnetic van der Waals (vdW) materials are a promising platform for producing atomically thin spintronic and optoelectronic devices. The A‐type antiferromagnet CrSBr has emerged as a particularly exciting material due to its high magnetic ordering temperature, semiconducting electrical properties, and enhanced chemical stability compared to other vdW magnets. Exploring mechanisms to tune its magnetic properties will facilitate the development of nanoscale devices based on vdW materials with designer magnetic properties. Here it is investigated how the magnetic properties of CrSBr change under pressure and ligand substitution. Pressure compresses the unit cell, increasing the interlayer exchange energy while lowering the Néel temperature. Ligand substitution, realized synthetically through Cl alloying, anisotropically compresses the unit cell and suppresses the Cr‐halogen covalency, reducing the magnetocrystalline anisotropy energy and decreasing the Néel temperature. A detailed structural analysis combined with first‐principles calculations reveals that alterations in the magnetic properties are intricately related to changes in direct Cr–Cr exchange interactions and the Cr–anion superexchange pathways. Further, it is demonstrated that Cl alloying enables chemical tuning of the interlayer coupling from antiferromagnetic to ferromagnetic, which is unique among known two‐dimensional magnets.

    more » « less
  3. Abstract

    Ultra-thin films of low damping ferromagnetic insulators with perpendicular magnetic anisotropy have been identified as critical to advancing spin-based electronics by significantly reducing the threshold for current-induced magnetization switching while enabling new types of hybrid structures or devices. Here, we have developed a new class of ultra-thin spinel structure Li0.5Al1.0Fe1.5O4(LAFO) films on MgGa2O4(MGO) substrates with: 1) perpendicular magnetic anisotropy; 2) low magnetic damping and 3) the absence of degraded or magnetic dead layers. These films have been integrated with epitaxial Pt spin source layers to demonstrate record low magnetization switching currents and high spin-orbit torque efficiencies. These LAFO films on MGO thus combine all of the desirable properties of ferromagnetic insulators with perpendicular magnetic anisotropy, opening new possibilities for spin based electronics.

    more » « less
  4. Abstract

    As a promising alternative to the mainstream CoFeB/MgO system with interfacial perpendicular magnetic anisotropy (PMA),L10‐FePd and its synthetic antiferromagnet (SAF) structure with large crystalline PMA can support spintronic devices with sufficient thermal stability at sub‐5 nm sizes. However, the compatibility requirement of preparingL10‐FePd thin films on Si/SiO2wafers is still unmet. In this paper, high‐qualityL10‐FePd and its SAF on Si/SiO2wafers are prepared by coating the amorphous SiO2surface with an MgO(001) seed layer. The preparedL10‐FePd single layer and SAF stack are highly (001)‐textured, showing strong PMA, low damping, and sizeable interlayer exchange coupling, respectively. Systematic characterizations, including advanced X‐ray diffraction measurement and atomic resolution‐scanning transmission electron microscopy, are conducted to explain the outstanding performance ofL10‐FePd layers. A fully‐epitaxial growth that starts from MgO seed layer, induces the (001) texture ofL10‐FePd, and extends through the SAF spacer is observed. This study makes the vision of scalable spintronics more practical.

    more » « less
  5. Abstract

    Organic‐based magnetic materials have been used for spintronic device applications as electrodes of spin aligned carriers and spin‐pumping substrates. Their advantages over more traditional inorganic magnets include reduced magnetic damping and lower fabrication costs. Vanadium tetracyanoethylene, V[TCNE]x(x ≈ 2), is an organic‐based ferrimagnet with an above room‐temperature magnetic order temperature (Tc ≈ 400 K). V[TCNE]xhas deposition flexibility and can be grown on a variety of substrates via low‐temperature chemical vapor deposition (CVD). A systematic study of V[TCNE]xthin‐film CVD parameters to achieve optimal film quality, reproducibility, and excellent magnetic properties is reported. This is assessed by broadband ferromagnetic resonance (FMR) that shows most narrow linewidth of ≈1.5 Gauss and an extremely low Gilbert damping coefficient. The neat V[TCNE]xfilms are shown to be efficient spin injectors via spin pumping into an adjacent platinum layer. Also, under an optimized FMR linewidth, the V[TCNE]xfilms exhibit Fano‐type resonance with a continuum broadband absorption in the microwave range, which can be readily tuned by the microwave frequency.

    more » « less