skip to main content


This content will become publicly available on June 11, 2025

Title: Site U1587
Site U1587 is the second farthest from shore drilled during Expedition 397 and located at a water depth of 3479 meters below sea level (mbsl) (Figures F1, F2, F3). It is the second deepest site along the bathymetric transect and is bathed today by a mixture of ~75% North Atlantic Deep Water (NADW) and 25% Lower Deep Water (LDW) sourced from the Southern Ocean (Figure F4) (Jenkins et al., 2015). The mixing ratio of these water masses and their vertical position in the water column has changed in the past, which has implications for ventilation and carbon storage in the deep Atlantic Ocean. The location of Site U1587 was motivated by the clear expression of millennial climate variability in proxy records of oxygen isotopes and sea-surface temperature in nearby Piston Core MD95-2042 (Shackleton et al., 2000, 2004; Bard et al., 2000; Pailler and Bard, 2002; Davtian and Bard, 2023). Isotopic, organic biomarker, and pollen results from this core demonstrated the potential of correlating Iberian margin sediments with ice cores from Greenland and Antarctica and with European terrestrial sequences (e.g., Sánchez-Goñi et al., 2000; Margari et al., 2010, 2014, 2020). The sediment record from Site U1587 provides the opportunity to develop sediment proxy records for the Greenland and Antarctic ice cores to the base of the Quaternary and beyond. The piston core (JC089-04-2P) recovered near Site U1587 is 10.7 m long and has a sedimentation rate of 17 cm/ky (Figure F5). Ca/Ti and Zr/Sr show strong evidence of millennial variability during the last glacial cycle. The objective for Site U1587 is to study such variability for older glacial cycles throughout the Quaternary. Site U1587 is located at the intersection of Seismic Lines JC089-6 and JC089-7 (Figure F6). Although mass transport deposits or disturbed intervals are developed nearby, the continuity of reflections is good at Site U1587 (Figures F7, F8). The Upper Miocene to Quaternary sequence at Site U1587 is expanded relative to Site U1586 and is more than 500 m thick. Sedimentation rates are estimated to average ~10 cm/ky at Site U1587, or about twice that of Site U1586. We had permission from the Environmental Protection and Safety Panel (EPSP) to drill to 500 meters below seafloor (mbsf), but we requested and were granted permission to drill an additional 50 m to extend the record well into the late Miocene. Site U1587 provides an expanded sequence of late Miocene to Quaternary sediments with which to address the following objectives: Document how millennial climate variability evolved during the glacial cycles of the Quaternary and Pliocene as boundary conditions changed with the progressive intensification of Northern Hemisphere glaciation (NHG). Reconstruct the history of changing local dominance of northern-sourced versus southern-sourced deep water, as well as ventilation and carbon storage in the deep Atlantic Ocean. Determine interhemispheric phase relationships (leads/lags) by comparing the timing of proxy variables that monitor surface (Greenland) and deepwater (Antarctic) components of the climate system. Investigate climate during past interglacial periods, including the warm Pliocene period prior to the intensification of NHG. Link terrestrial, marine, and ice core records by analyzing pollen and terrestrial biomarkers that are delivered to the deep-sea environment of the Iberian margin. Recover a complete record of the time leading up to, during, and following the Messinian Salinity Crisis, which complements objectives of International Ocean Discovery Program (IODP) Expedition 401 (Flecker et al., 2023) and will permit evaluation of the causes and consequences of this remarkable event in Earth's history. Develop an orbitally-tuned age model for Site U1587 by correlating physical properties to eccentricity-modulated precession and tying them into the record of Mediterranean cyclostratigraphy.  more » « less
Award ID(s):
1326927
NSF-PAR ID:
10513606
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Publisher / Repository:
International Ocean Discovery Program
Date Published:
Journal Name:
Proceedings of the International Ocean Discovery Program Expedition reports
Volume:
397
Issue:
104
ISSN:
2377-3189
Subject(s) / Keyword(s):
International Ocean Discovery Program IODP JOIDES Resolution Expedition 397 Iberian Margin Paleoclimate Climate and Ocean Change Site U1587 paleo-Conductivity-Temperature-Depth paleo-CTD Lower Deep Water LDW North Atlantic Deep Water NADW millennial-scale Pleistocene Quaternary Pliocene Miocene Messinian Salinity Crisis cyclostratigraphy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Site U1586 is the deepest (4692 meters below sea level [mbsl]) and farthest site from shore (170 km) drilled during Expedition 397 (Figures F1, F2, F3). It is located near the toe of the Promontório dos Príncipes de Avis at Common Midpoint (CMP) 1330 on Cruise JC89 Seismic Line 2 near the intersection of Cruise JC089 Line 3 (Figures F4, F5, F6). The continental slope environment is prone to failure and mass transport deposits (MTDs), and large disturbances are recognizable features on seismic profiles. For example, Site U1586 is between two MTDs or disturbed intervals at about 6.3 and 6.5 s two-way traveltime (TWT) on Cruise JC089 Seismic Line 2 near CMPs 1170–1250 and around CMP 1350 (Figure F5). Site U1586 is located where there is good continuity of reflectors to avoid these MTDs, but disturbances may still occur on a shorter length scale than the resolution of the seismic profiles. The target drilling depth of 350 meters below seafloor (mbsf) corresponds to the top of a package of chaotic high-amplitude reflections at 6.6 s TWT that was initially estimated to be late Miocene (~7 Ma) but was later determined biostratigraphically to be middle Miocene (~14 Ma) on the basis of shipboard micropaleontological analyses. The primary scientific objective of Site U1586 was to recover a deep distal record from a water depth of ~4690 mbsl. The sediment thickness thins toward the toe of the Promontório dos Príncipes de Avis owing to lower sedimentation rates with increased distance from shore. Interpretation of the seismic profiles suggests the sequence spans the late Miocene to Quaternary with an average sedimentation rate of 5 cm/ky. Recovery of late Miocene sediment at this site will complement sequences to be drilled during International Ocean Discovery Program (IODP) Expedition 401 to study the exchange between the Mediterranean and Atlantic for the period before, during, and after the Messinian Salinity Crisis (5.96–5.33 Ma) (Flecker et al., 2023). The sediments will also provide a history of surface and deepwater conditions through the Pliocene, including the mid-Pliocene warm period, when atmospheric CO2 was similar to today (400 ppm). Sediments recovered at Site U1586 will also be useful for studying how surface and deep oceanographic conditions responded to the intensification of Northern Hemisphere glaciation in the late Pliocene (~2.9 Ma). Site U1586 is under the influence of Lower Deep Water (LDW), which consists of Antarctic Bottom Water whose properties have been modified significantly from its origin in the high-latitude South Atlantic (Figure F7). This site's great depth may result in carbonate microfossil dissolution, although a 7.45 m piston core (JC089-5-3P) and 4.68 m kasten core (JC089-5-3K) recovered at the same location show continuous preservation of foraminifers during the last glacial stage and Holocene. Results from shipboard analyses during Expedition 397 further show that carbonate preservation and abundance of calcareous microfossils extends back to the Miocene (see Biostratigraphy). Sedimentation rates in the piston core average 11 cm/ky. The Ca/Ti and Zr/Sr measured using core scanning X-ray fluorescence (XRF) show distinct millennial events (Channell et al., 2018), with particularly notable peaks in Zr/Sr marking each of the Heinrich stadials of the last glacial period (Figure F8). Study of Site U1586 cores will permit the reconstruction of changes in ventilation and carbon storage in the deepest Atlantic on glacial–interglacial and millennial timescales with potential implications for atmospheric CO2 changes. Preservation of terrestrial biomarkers and pollen will permit reconstruction of vegetation changes in Europe. Lastly, it should be possible to correlate physical properties at Site U1586 into the Mediterranean cyclostratigraphy, thereby permitting regional climate change to be placed into a global context. 
    more » « less
  2. During Expedition 339, Site U1385 (37°34.2849′N, 10°7.5616′W) was drilled to a maximum penetration of 151.5 meters below seafloor (mbsf) (Expedition 339 Scientists, 2013) (Figure F1). Site U1385 was a proof of concept to test the continuity and fidelity of the sedimentary record and to support further drilling on the Iberian margin. Results from Site U1385 demonstrated the great promise of the Iberian margin to yield long, continuous records of millennial climate variability (MCV) and detailed land-sea comparisons. Almost exactly 11 y later, we reoccupied Site U1385 (37°34.0128′N, 10°7.6580′W) during Expedition 397 to deepen the sequence. We elected to retain the same site designation, beginning with Hole U1385F, and distinguish the two sites as Site 339-U1385 and Site 397-U1385. Site 397-U1385 is located <1 km southwest of Site 339-U1385 (Figure F2), and seismic data indicate the stratigraphy is continuous between the two locations. On 25–29 November 2011, Site 339-U1385 was drilled in the lower slope of the Portuguese margin to provide a marine reference section of Pleistocene MCV. Five holes were cored (Holes U1385A–U1385E) using the advanced piston corer (APC) system (Figure F3) (Expedition 339 Scientists, 2013). Hole U1385C consisted of a single core in an attempt to retrieve the mudline. With only 4 days of drilling for Site 339-U1385, we were only able to drill to a maximum depth of 156 mbsf. A composite section was constructed using all holes to 166.5 corrected revised meters composite depth (crmcd) by correlating elemental ratios (Ca/Ti) measured by core scanning X-ray fluorescence (XRF) at 1 cm resolution (Hodell et al., 2015). For Site 397-U1385, we eventually intend to correlate the top part of the section to the holes drilled during Expedition 339 and provide an integrated composite reference splice (Hodell et al., 2015). This will permit isotope and other proxy measurements from existing Expedition 339 Holes U1385A–U1385E to be integrated with new data from Expedition 397 Holes U1385F–U1385J. The Site 339-U1385 record extends to 1.45 Ma (Marine Isotope Stage [MIS] 47) with an average sedimentation rate of 11 cm/ky (Figures F3, F4). Sedimentation rates are expected to be similar throughout the Quaternary. The record is mostly complete except for a short hiatus at Termination V that has removed part of late MIS 12 and early MIS 11. It is hoped that drilling at the new location of Site 397-U1385 would avoid this hiatus and provide a continuous sequence, filling the gap at Site 339-U1385. Because the existing working halves of Expedition 339 Holes U1385A–U1385E have been largely depleted to meet intense sampling demand, the uppermost 150 m were duplicated at Site 397-U1385 to provide additional sediment for future studies. Site 339-U1385 has been studied extensively since it was recovered over a decade ago (see the Expedition 339 Expedition-related bibliography [Stow, Hernández-Molina, Alvarez Zarikian, and the Expedition 339 Scientists, 2013]) and has provided a high-resolution benchmark record of MCV for the past 1.45 My (Hodell et al., 2023). Extending this remarkable sediment archive further back in time was the primary goal of reoccupying Site U1385 during Expedition 397. Site 397-U1385 is located ~1 km southwest of Expedition 339 Site U1385 at a water depth of 2591 meters below sea level (mbsl), placing it in the core of Lower Northeast Atlantic Deep Water (LNEADW) today (Figure F5). It is the second shallowest site along the Expedition 397 bathymetric transect (paleo-conductivity-temperature-depth [paleo-CTD]) (Figure F6) and is located along an elevated ridge (Figure F7), thereby decreasing the chances of disturbance by downslope transport. It is located on Seismic Line JC089-9 close to the intersection of Seismic Line JC089-13 (Figure F2) and near the position of Piston Core MD01-2444 (Figure F1). The objective is to recover the deeper part of the section below Site 339-U1385 to the base of the Pliocene (orange reflector) at 400 mbsf (Figures F8, F9), which will more than double the section recovered at Site 339-U1385. The specific objectives of Site 397-U1385 are as follows: Document the nature of MCV for older glacial cycles of the Quaternary beyond the penetration limit of Site 339-U1385 (1.45 Ma). Derive a marine sediment proxy record for Greenland and Antarctic ice cores to examine the amplitude and pacing of MCV during the Quaternary. Determine interhemispheric phase relationships (leads/lags) by comparing the timing of proxy variables that monitor surface (linked to Greenland) and deepwater (linked to Antarctica) components of the climate system. Study how changes in orbital forcing and glacial boundary conditions affect the character of MCV and, in turn, how MCV interacts with orbital geometry to produce the observed glacial-to-interglacial patterns of climate change. Determine how MCV evolved during the Pliocene–Pleistocene as glacial boundary conditions changed with the progressive intensification of Northern Hemisphere glaciation (NHG). Reconstruct the history of changing local dominance of northern-sourced versus southern-sourced deep water by comparing Site U1385 with the other sites along the bathymetric transect (Figure F6). Investigate climate during past interglacial periods, including the warm Pliocene period prior to the intensification of NHG. Link terrestrial, marine, and ice core records by analyzing pollen and terrestrial biomarkers that are delivered to the deep-sea environment of the Iberian margin. Develop an orbitally tuned age model by correlating sediment physical properties at Site U1385 to eccentricity-modulated precession and integrating this record into Mediterranean cyclostratigraphy. 
    more » « less
  3. During International Ocean Discovery Program Expedition 397, we recovered a total of 6176.7 m of core (104.2% recovery) at four sites (U1586, U1587, U1385, and U1588) from the Promontório dos Principes de Avis (PPA) (Figure F1), a plateau located on the Portuguese continental slope that is elevated above the Tagus Abyssal Plain and isolated from the influence of turbidites. The drill sites are arranged along a bathymetric transect (4691, 3479, 2590, and 1339 meters below sea level [mbsl], respectively) to intersect each of the major subsurface water masses of the eastern North Atlantic (Figures F2, F7). Multiple holes were drilled at each site to ensure complete spliced composite sections (Figure F3; Table T1), which will be further refined postcruise by a campaign of X-ray fluorescence core scanning. At Site U1586 (4691 mbsl), the deepest and farthest from shore, a 350 m sequence was recovered in four holes that extend as far back as the middle Miocene (14 Ma), which is nearly twice as old as initially predicted from seismic stratigraphy. Sedimentation rates are lower (averaging 5 cm/ky in the Quaternary) at Site U1586 than other Expedition 397 sites (Figure F4), and a few slumped intervals were encountered in the stratigraphic sequence. Despite these limitations, Site U1586 anchors the deep end-member of the bathymetric transect and provides an important reference section to study deepwater circulation, ventilation and carbon storage in the deep eastern North Atlantic. At Site U1587 (3479 mbsl), the second deepest site along the depth transect, we recovered a 567 m sequence of late Miocene to Holocene sediments that accumulated at rates between 6.5 and 11 cm/ky (Figure F4). The high sedimentation rates and long continuous record at this site will permit climate reconstruction at high temporal resolution (e.g., millennial) for the past 7.8 My. A complete Messinian Stage (7.246–5.333 Ma) was recovered, which provides a valuable opportunity to study the Messinian Salinity Crisis in an open marine setting adjacent to the Mediterranean. Site U1385 (Shackleton site) was a reoccupation of a position previously drilled during Integrated Ocean Drilling Program Expedition 339. Expedition 339 Site U1385 has yielded a remarkable record of millennial-scale climate change for the past 1.45 My (Marine Isotope Stage [MIS] 47) (Figure F6). During Expedition 397, we deepened the site from 156 to 400 meters below seafloor (mbsf), extending the basal age into the early Pliocene (4.5 Ma). Sedimentation rates remained high, averaging between 11 and 9 cm/ky throughout the sequence (Figure F4). The newly recovered cores at Expedition 397 Site U1385 will permit the study of millennial climate variability through the entire Quaternary and into the Pliocene, prior to the intensification of Northern Hemisphere glaciation. Site U1588 is the shallowest, closest to shore, and youngest site drilled during Expedition 397 and is also the one with the highest sedimentation rate (20 cm/ky). The base of the 412.5 m sequence is 2.2 Ma, providing an expanded Pleistocene sequence of sediment deposited under the influence of the lower core of the Mediterranean Outflow Water (MOW). Together with other Expedition 339 sites, Site U1588 will be important for determining how the depth and intensity of the MOW has varied on orbital and millennial timescales. In addition, it also provides a marine reference section for studying Quaternary climate variability at very high temporal resolution (millennial to submillennial). A highlight of the expedition is that sediment at all sites shows very strong cyclicity in bulk sediment properties (color, magnetic susceptibility, and natural gamma radiation). Particularly notable are the precession cycles of the Pliocene that can be correlated peak-for-peak among sites (Figure F10). These cyclic variations will be used to derive an orbitally tuned timescale for Expedition 397 sites and correlate them into classic Mediterranean cyclostratigraphy. The cores recovered during Expedition 397 will form the basis of collaborative postcruise research to produce benchmark paleoclimate records for the late Miocene through Quaternary using the widest range of proxy measurements. It will take many years to complete these analyses, but the records will lead to major advances in our understanding of millennial and orbital climate changes and their underlying causes and evolving contextuality. Outreach during Expedition 397 was highly productive, reaching a record number of students and the general public across the world through several diverse platforms, including live ship-to-shore events, webinars, social media, videos, radio pieces, blog posts, and in-person activities. 
    more » « less
  4. During International Ocean Discovery Program Expedition 397, we recovered a total of 6176.7 m of core (104.2% recovery) at four sites (U1586, U1587, U1385, and U1588) from the Promontório dos Príncipes de Avis, a plateau located on the Portuguese continental slope that is elevated above the Tagus Abyssal Plain and isolated from the influence of turbidites. The drill sites are arranged along a bathymetric transect (4692, 3479, 2591, and 1339 meters below sea level [mbsl], respectively) to intersect each of the major subsurface water masses of the eastern North Atlantic. Multiple holes were drilled at each site to ensure complete spliced composite sections, which will be further refined postcruise by a campaign of X-ray fluorescence core scanning. At Site U1586 (4692 mbsl), the deepest and farthest from shore, a 350 m sequence was recovered in four holes that extend as far back as the middle Miocene (14 Ma), which is nearly twice as old as initially predicted from seismic stratigraphy. Sedimentation rates are lower (averaging 5 cm/ky in the Quaternary) at Site U1586 than other Expedition 397 sites, and a few slumped intervals were encountered in the stratigraphic sequence. Despite these limitations, Site U1586 anchors the deep end-member of the bathymetric transect and provides an important reference section to study deepwater circulation, ventilation and carbon storage in the deep eastern North Atlantic. At Site U1587 (3479 mbsl), the second deepest site along the depth transect, we recovered a 567 m sequence of late Miocene to Holocene sediments that accumulated at rates between 6.5 and 11 cm/ky. The high sedimentation rates and long continuous record at this site will permit climate reconstruction at high temporal resolution (e.g., millennial) for the past 7.8 My. The Messinian Stage (7.25–5.33 Ma) was recovered, which provides a valuable opportunity to study the Messinian Salinity Crisis in an open marine setting adjacent to the Mediterranean. Site U1385 (Shackleton site) was a reoccupation of a position previously drilled during Integrated Ocean Drilling Program Expedition 339. Expedition 339 Site U1385 has yielded a remarkable record of millennial-scale climate change for the past 1.45 My (Marine Isotope Stage 47). During Expedition 397, we deepened the site from 156 to 400 meters below seafloor, extending the record to near the base of the Pliocene (5.3 Ma). Sedimentation rates remained high, averaging between 9 and 11 cm/ky throughout the sequence. The newly recovered cores at Expedition 397 Site U1385 will permit the study of millennial climate variability through the entire Quaternary and Pliocene, prior to the intensification of Northern Hemisphere glaciation. Site U1588 is the shallowest, closest to shore, and youngest site drilled during Expedition 397 and is also the one with the highest sedimentation rate (20 cm/ky). The base of the 412.5 m sequence is 2.2 Ma, providing an expanded Pleistocene sequence of sediment deposited under the influence of the lower core of the Mediterranean Outflow Water (MOW). Together with other Expedition 339 sites, Site U1588 will be important for determining how the depth and intensity of the MOW has varied on orbital and millennial timescales. In addition, it also provides a marine reference section for studying Quaternary climate variability at very high temporal resolution (millennial to submillennial). A highlight of the expedition is that sediment at all sites shows very strong cyclicity in bulk sediment properties (color, magnetic susceptibility, and natural gamma radiation). Particularly remarkable are the precession cycles of the Pliocene that can be correlated peak-for-peak among sites. These cyclic variations will be used to derive an orbitally tuned timescale for Expedition 397 sites and correlate them into classic Mediterranean cyclostratigraphy. The cores recovered during Expedition 397 will form the basis of collaborative postcruise research to produce benchmark paleoclimate records for the late Miocene through Quaternary using the widest range of proxy measurements. It will take many years to complete these analyses, but the records will lead to major advances in our understanding of millennial and orbital climate changes and their underlying causes and evolving contextuality. Outreach during Expedition 397 was highly productive, reaching a record number of students and the general public across the world through several diverse platforms, including live ship-to-shore events, webinars, social media, videos, radio pieces, blog posts, and in-person activities. 
    more » « less
  5. During International Ocean Discovery Program Expedition 397, we recovered a total of 6176.7 m of core (104.2% recovery) at four sites (U1586, U1587, U1385, and U1588) from the Promontório dos Príncipes de Avis, a plateau located on the Portuguese continental slope that is elevated above the Tagus Abyssal Plain and isolated from the influence of turbidites. The drill sites are arranged along a bathymetric transect (4692, 3479, 2591, and 1339 meters below sea level [mbsl], respectively) to intersect each of the major subsurface water masses of the eastern North Atlantic. Multiple holes were drilled at each site to ensure complete spliced composite sections, which will be further refined postcruise by a campaign of X-ray fluorescence core scanning. At Site U1586 (4692 mbsl), the deepest and farthest from shore, a 350 m sequence was recovered in four holes that extend as far back as the middle Miocene (14 Ma), which is nearly twice as old as initially predicted from seismic stratigraphy. Sedimentation rates are lower (averaging 5 cm/ky in the Quaternary) at Site U1586 than other Expedition 397 sites, and a few slumped intervals were encountered in the stratigraphic sequence. Despite these limitations, Site U1586 anchors the deep end-member of the bathymetric transect and provides an important reference section to study deepwater circulation, ventilation and carbon storage in the deep eastern North Atlantic. At Site U1587 (3479 mbsl), the second deepest site along the depth transect, we recovered a 567 m sequence of late Miocene to Holocene sediments that accumulated at rates between 6.5 and 11 cm/ky. The high sedimentation rates and long continuous record at this site will permit climate reconstruction at high temporal resolution (e.g., millennial) for the past 7.8 My. The Messinian Stage (7.25–5.33 Ma) was recovered, which provides a valuable opportunity to study the Messinian Salinity Crisis in an open marine setting adjacent to the Mediterranean. Site U1385 (Shackleton site) was a reoccupation of a position previously drilled during Integrated Ocean Drilling Program Expedition 339. Expedition 339 Site U1385 has yielded a remarkable record of millennial-scale climate change for the past 1.45 My (Marine Isotope Stage 47). During Expedition 397, we deepened the site from 156 to 400 meters below seafloor, extending the record to near the base of the Pliocene (5.3 Ma). Sedimentation rates remained high, averaging between 9 and 11 cm/ky throughout the sequence. The newly recovered cores at Expedition 397 Site U1385 will permit the study of millennial climate variability through the entire Quaternary and Pliocene, prior to the intensification of Northern Hemisphere glaciation. Site U1588 is the shallowest, closest to shore, and youngest site drilled during Expedition 397 and is also the one with the highest sedimentation rate (20 cm/ky). The base of the 412.5 m sequence is 2.2 Ma, providing an expanded Pleistocene sequence of sediment deposited under the influence of the lower core of the Mediterranean Outflow Water (MOW). Together with other Expedition 339 sites, Site U1588 will be important for determining how the depth and intensity of the MOW has varied on orbital and millennial timescales. In addition, it also provides a marine reference section for studying Quaternary climate variability at very high temporal resolution (millennial to submillennial). A highlight of the expedition is that sediment at all sites shows very strong cyclicity in bulk sediment properties (color, magnetic susceptibility, and natural gamma radiation). Particularly remarkable are the precession cycles of the Pliocene that can be correlated peak-for-peak among sites. These cyclic variations will be used to derive an orbitally tuned timescale for Expedition 397 sites and correlate them into classic Mediterranean cyclostratigraphy. The cores recovered during Expedition 397 will form the basis of collaborative postcruise research to produce benchmark paleoclimate records for the late Miocene through Quaternary using the widest range of proxy measurements. It will take many years to complete these analyses, but the records will lead to major advances in our understanding of millennial and orbital climate changes and their underlying causes and evolving contextuality. Outreach during Expedition 397 was highly productive, reaching a record number of students and the general public across the world through several diverse platforms, including live ship-to-shore events, webinars, social media, videos, radio pieces, blog posts, and in-person activities. 
    more » « less