Abstract The synthesis of high‐molecular‐weight poly(vinyl ethers) under mild conditions is a significant challenge, since cationic polymerization reactions are highly sensitive to chain‐transfer and termination events. We identified a novel and highly effective hydrogen bond donor (HBD)–organic acid pair that can facilitate controlled cationic polymerization of vinyl ethers under ambient conditions with excellent monomer compatibility. Poly(vinyl ethers) of molar masses exceeding 50 kg mol−1can be produced within 1 h without elaborate reagent purification. Modification of the HBD structure allowed tuning of the polymerization rate, while DFT calculations helped elucidate crucial intermolecular interactions between the HBD, organic acid, and polymer chain end.
more »
« less
Accelerating cationic polymerizations with a hydrogen bond donor
Photoacid generators (PAGs) have facilitated a number of technology breakthroughs in the electronic, coating, and additive manufacturing industries. Traditionally, PAGs that contain weakly coordinating anions, such as PF6-, generate Brønsted superacids under UV irradiation for rapid cationic polymerizations. However, PAGs with strongly coordinating anions remain under-utilized as they form weak acids that are inefficient or even incapable of initiating polymerization. To expand the scope of potential counteranions in PAGs, we leveraged a thiophosphoramide hydrogen bond donor (HBD) to catalyze photoinitiated cationic polymerizations from diphenyliodonium PAGs. Through the formation of hydrogen bonds between the HBD and PAG counteranion, acceleration of the polymerization rate was observed for a range of non-coordinating and coordinating anions. The effect of the HBD on the polymerization kinetics was investigated by 1H-NMR titrations and geometry optimizations. Extending HBD catalysis beyond photopolymerizations, addition of HBD also enabled hydrochloric acid to initiate controlled reversible addition-fragmentation chain transfer (RAFT) polymerization under ambient conditions. With the versatility of HBD, there is potential to access initiation systems that were previously believed to be impractical for cationic polymerization.
more »
« less
- Award ID(s):
- 2108598
- PAR ID:
- 10513644
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- European Polymer Journal
- Volume:
- 207
- Issue:
- C
- ISSN:
- 0014-3057
- Page Range / eLocation ID:
- 112814
- Format(s):
- Medium: X Other: pdf
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cationic reversible addition–fragmentation chain transfer (RAFT) polymerizations have permitted the controlled polymerization of vinyl ethers and select styrenics with predictable molar masses and easily modified thiocarbonylthio chain ends. However, most cationic RAFT systems require inert reaction conditions with highly purified reagents and low temperatures. Our groups recently developed a living cationic polymerization that does not require these rigorous conditions by utilizing a strong organic acid (pentacarbomethoxycyclopentadiene (PCCP)) and a hydrogen bond donor. By combining our PCCP acid promoted polymerization with a chain transfer agent, we have designed a tolerant cationic RAFT system that can be performed neat, open to the air, and at room temperature. Additionally, this system allows us to utilize catalytic amounts of the PCCP acid to furnish polymers with chain end functionality that can be easily isolated and further manipulated to make functional materials.more » « less
-
null (Ed.)Recent developments in photocontrolled polymerizations have facilitated the development of previously inaccessible materials. While photocontrolled radical polymerizations have been extensively studied, related processes involving cationic polymerizations are underexplored and limited to RAFT processes. In this study, we disclose a visible light, temporally controlled cationic polymerization of vinyl ethers utilizing thioacetals and a photoredox catalyst. We demonstrate a broad scope of thioacetal initiators that achieve a well-controlled polymerization by recapping propagating chains via photocatalyst turnover in combination with a degenerate chain transfer process through sulfonium intermediates. Furthermore, we show that a photocatalyst with a more reducing ground state reduction potential allows for enhanced control and excellent temporal regulation of polymerization.more » « less
-
Cationic polymerization is a powerful strategy for the production of well-defined polymers and advanced materials. In particular, the emergence of living cationic polymerization has enabled pathways to complex polymer architectures inaccessible before. The use of light and electricity as external stimuli to regulate cationic polymerization represents another advance with increasing applications in surface fabrication and patterning, additive manufacturing, and other advanced material engineering. The past decade also witnessed vigorous progress in stereoselective cationic polymerizations, allowing for the dual control of both the tacticity and the molecular weight of vinyl polymers towards precision polymers. In addition, in addressing the plastics pollution crisis and achieving a circular materials economy, cationic polymerization offers unique advantages for generating chemically recyclable polymers, such as polyacetals, polysaccharides, polyvinyl ethers, and polyethers. In this review, we provide an overview of recent developments in regulating cationic polymerization, including emerging control systems, spatiotemporally controlled polymerization (light and electricity), stereoselective polymerization, and chemically recyclable/degradable polymers. Hopefully, these discussions will help to stimulate new ideas for the further development of cationic polymerization for researchers in the field of polymer science and beyond.more » « less
-
Abstract Frontal polymerization (FP) of epoxy monomers is typically achieved with a radical‐induced cationic frontal polymerization (RICFP) process that combines a thermal radical initiator with an onium salt superacid generator. In this paper, we show that both thermal and UV‐initiated cationic frontal polymerizations are possible for common epoxy and vinyl ether monomers with only an iodonium superacid generator in the absence of a standalone thermal radical initiator. Increasing superacid generator concentration resulted in an increase in front velocity, as did the addition of vinyl ether to epoxies. The front velocity is reduced by the addition of 4‐methoxyphenol (MeHQ), indicating free‐radicals play a significant role.more » « less