skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fastenerless Joining of Carbon Fiber Reinforced Thermoplastic Composite to Aluminum
Abstract Continuous efforts are underway for the reduction of the structural weight of transit through the introduction of a multi-material metal-composites system. There are major challenges in joining dissimilar materials to result in optimum structural integrity. The conventional joining techniques have limitations in terms of preparation time, weight penalty resulting from adhesives, and uncertainty in joint integrity. Recently adoption of macro scale mechanical interlocking in the adhesive joining resulted in significant improvement of joint performance. This made mechanical interlocking gain an attention for hybrid joining. In this study, fastenerless method of mechanical interlocking based on Japanese wood joining craft is considered for joining carbon fiber-reinforced polyamide thermoplastic composite to aluminum. Different interlocking joining designs (IJDs) were developed. The joints were obtained by force-fitting the male into the female counterpart. Here the male and female segments joined at macro level with no joining integrity at the interface. Further, these joints were tested and evaluated for tensile strength. A finite element analysis (FEA) model is developed for stress analysis and studying failure mechanisms of the IJDs. It was observed that the geometry of IJD dictates the failure mode and material composition governs the maximum strength achieved by a particular IJD. Each IJD showed higher load capacity with metal as a female counterpart to the composite compared to other way round.  more » « less
Award ID(s):
2052738
PAR ID:
10513659
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
Journal Name:
ASME 2023 International Mechanical Engineering Congress and Exposition
ISBN:
978-0-7918-8760-8
Format(s):
Medium: X
Location:
New Orleans, Louisiana, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Additively manufactured auxetics (structures exhibiting a negative Poisson’s ratio) offer a unique combination of enhanced mechanical strength and energy absorption. These properties can be further improved through strategic material placement and architectural design. This study investigates the feasibility of fabricating bi-material rotating-square auxetic structures composed of flexible and rigid constituents in their squares and hinges. Rotating-square auxetic structures are manufactured via material extrusion using rigid polylactic acid (PLA) and flexible thermoplastic polyurethane (TPU) to explore the effects of material distribution on mechanical performance and failure characteristics at the macro (i.e., component) and meso (i.e., cell) scales. Baseline tests are conducted to quantify single- and bi-material interfacial strength and failure modes under normal, shear, and combined loading conditions. Upon validation of interface integrity, single- and bi-material auxetic structures are fabricated and tested in uniaxial compression. Relative to the TPU single-material structure, the PLA square-TPU hinge structure provides a 33% increase in structural stiffness, increases energy absorption, delays the global densification strain by 10%, yields a structural Poisson’s ratio at least 0.3 lower than its single-material counterpart through global axial strains of 20%, and demonstrates partial shape recovery. Multiscale experimental analyses supplemented by a kinematic model reveal the rotation-dependent stiffening mechanisms of these structures, highlighting the benefits of flexible hinge materials. Bi-material structures with flexible hinges are shown to have bilinear trends in structural stiffness and energy absorption, not intrinsic to their single-material counterparts. These findings highlight the potential of bi-material design strategies in advancing the functionality and tunability of auxetic structures for the next generation of mechanical metamaterials. 
    more » « less
  2. Online repository: https://speautomotive.com/acce-conference/2021-acce-papers-and-program-guides/ and also on: arXiv:2204.00909. Abstract: While welding of thermoplastic composites (TPCs) is a promising rivetless method to reduce weight, higher confidence in joints’ structural integrity and failure prediction must be achieved for widespread use in industry. In this work, we present an innovative study on damage detection for ultrasonically welded TPC joints with multi-walled carbon nanotubes (MWCNTs) and embedded buckypaper films. MWCNTs show promise for structural health monitoring (SHM) of composite joints, assembled by adhesive bonding or fusion bonding, through electrical resistance changes. This study focuses on investigating multifunctional films and their suitability for ultrasonic welding (USW) of TPCs, using two approaches: 1) MWCNT-filled polypropylene (PP) nanocomposites prepared via solvent dispersion, and 2) high conductivity MWCNT buckypaper embedded between PP films by hot pressing. Nanocomposite formulations containing 5 wt% and 10 wt% MWCNTs were synthesized using solvent dispersion method, followed by compression molding to manufacture films. The effect of MWCNT concentration on electrical and dynamic mechanical behavior of multifunctional films was examined with a Sourcemeter and Dynamic Mechanical Analyzer, and a comparison was made between 5 - 20 wt% MWCNT/PP films based on previous research. Glass fiber/polypropylene (GF/PP) composite joints were ultrasonically welded in a single lap shear configuration using buckypaper and MWCNT/PP films. Furthermore, electrical resistance measurements were carried out for joints under bending loads. It was observed that 15 wt% and 20 wt% MWCNT/PP films had higher stability and sensitivity for resistance response than embedded buckypaper and films with low MWCNT contents, demonstrating their suitability for USW and potential for SHM. 
    more » « less
  3. This work discusses several aspects of the weldability of AA5083-H116 butt-welded joints, using ER5183 filler material, automated GMAW-P process, and 80Ar19He1O2 shielding gas. The used methodology included the characterization of base metal, the development of welded joints using two different heat inputs, the microhardness profiles analysis on the cross section of the welded joint, and the microstructural evolution using microscopy. The above-mentioned measurements were complemented with residual stress evaluation using the x-ray diffraction technique, together with analysis of transversal and longitudinal tensile tests of the welded joints. The obtained results in welded joints indicated that yield strength, ultimate tensile strength, and ductility behavior have been influenced by heat input compared to base metal and reported values for similar alloys. Residual stress results showed that both the weld metal and adjacent coarse grain zone were subjected to tensile stresses, while the refined grain zone (FGZ) and base metal adjacent to the FGZ were subjected to compressive stresses. Additionally, the magnitude of residual stresses was smaller than maximum tensile stresses, and its behavior was related to both heat input and mechanical properties along welding regions. 
    more » « less
  4. Compliant sutures surrounded by stiff matrices are present in biological armors and carapaces, providing enhanced mechanical performance. Understanding the mechanisms through which these sutured composites achieve outstanding properties is key to developing engineering materials with improved strength and toughness. This article studies the impact of suture geometry and load direction on the performance of suture joints using a two-stage reactive polymer resin that enables facile photopatterning of mechanical heterogeneity within a single polymer network. Compliant sinusoidal sutures with varying geometries are photopatterned into stiff matrices, generating a modulus contrast of two orders of magnitude. Empirical relationships are developed connecting suture wavelength and amplitude to composite performance under parallel and perpendicular loading conditions. Results indicate that a greater suture interdigitation broadly improves composite performance when loading is applied perpendicular to suture joints, but has deleterious effects when loading is applied parallel to the joint. Investigations into the failure mechanisms under perpendicular loading highlight the interplay between suture geometry and crack growth stability after damage initiation occurs. Our findings could enable a framework for engineering composites and bio-inspired structures in the future. 
    more » « less
  5. Functionally graded adhesive bondlines are currently being researched to relax stress concentrations at the re-entrant corner of bonded joints and improve the strength of joints. Bi-adhesive joints have been under development for some time, but lately adhesives with continuous gradation have been shown to theoretically enable more stress reductions and greater strength benefits. Several researchers have shown the potential to create a working adhesive gradation system with very promising results, but adhesive stability over long periods of time has proven difficult to realize. Nearly as important as adhesive development are analysis methods for functionally graded adhesive joints, since the gradation must be designed to yield beneficial results. Therefore, this work addresses the potential gains provided by design of functionally graded adhesive joints driven by finite element analysis. A parametric study on a strap joint with homogenous adhesive is conducted to highlight parameters which influence the global strength of an adhesively bonded joint. A statistical approach is used to identify significant correlations between strength and adhesive material parameters. Results from the statistical study are applied to drive strategies to create joints with optimized gradation and validated by failure analysis within the finite element model. A strap joint is analyzed as example of the potential gain of functionally graded joints. 
    more » « less