skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Departure from Mixed-Layer Similarity During the Afternoon Decay of Turbulence in the Free-Convective Boundary Layer: Results from Large-Eddy Simulations
Abstract This study analyses the departure of the velocity-variances profiles from their quasi-steady state described by the mixed-layer similarity, using large-eddy simulations with different prescribed shapes and time scales of the surface kinematic heat flux decay. Within the descriptive frames where the time is tracked solely by the forcing time scale (either constant or time-dependent) describing the surface heat flux decay, we find that the normalized velocity-variances profiles from different runs do not collapse while they depart from mixed-layer similarity. As the mixed-layer similarity relies on the assumption that the free-convective boundary layer is in a quasi-equilibrium, we consider the ratios of the forcing time scales to the convective eddy-turnover time scale. We find that the normalized velocity-variances profiles collapse in the only case where the ratio ($$\widetilde{r}$$ r ~ ) of the time-dependent forcing time scale to the convective eddy-turnover time scale is used for tracking the time, supporting the independence of the departure from the characteristics of the surface heat flux decay. As a consequence of this result, the knowledge of$$\widetilde{r}$$ r ~ is sufficient to predict the departure of the velocity variances from their quasi-steady state, irrespective of the shape of the surface heat flux decay. This study highlights the importance of considering both the time-dependent forcing time scale and the convective eddy-turnover time scale for evaluating the response of the free-convective boundary layer to the surface heat flux decay.  more » « less
Award ID(s):
1853354
PAR ID:
10513791
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Boundary-Layer Meteorology
ISSN:
0006-8314
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove an equivariant version of the Cosmetic Surgery Conjecture for strongly invertible knots. Our proof combines a recent result of Hanselman with the Khovanov multicurve invariants$${\widetilde{{{\,\textrm{Kh}\,}}}}$$ Kh ~ and$${\widetilde{{{\,\textrm{BN}\,}}}}$$ BN ~ . We apply the same techniques to reprove a result of Wang about the Cosmetic Crossing Conjecture and split links. Along the way, we show that$${\widetilde{{{\,\textrm{Kh}\,}}}}$$ Kh ~ and$${\widetilde{{{\,\textrm{BN}\,}}}}$$ BN ~ detect if a Conway tangle is split. 
    more » « less
  2. Abstract Charge density wave (CDW) ordering has been an important topic of study for a long time owing to its connection with other exotic phases such as superconductivity and magnetism. The$$R{\textrm{Te}}_{3}$$ R Te 3 (R= rare-earth elements) family of materials provides a fertile ground to study the dynamics of CDW in van der Waals layered materials, and the presence of magnetism in these materials allows to explore the interplay among CDW and long range magnetic ordering. Here, we have carried out a high-resolution angle-resolved photoemission spectroscopy (ARPES) study of a CDW material$${\textrm{Gd}}{\textrm{Te}}_{3}$$ Gd Te 3 , which is antiferromagnetic below$$\sim \mathrm {12~K}$$ 12 K , along with thermodynamic, electrical transport, magnetic, and Raman measurements. Our ARPES data show a two-fold symmetric Fermi surface with both gapped and ungapped regions indicative of the partial nesting. The gap is momentum dependent, maximum along$${\overline{\Gamma }}-\mathrm{\overline{Z}}$$ Γ ¯ - Z ¯ and gradually decreases going towards$${\overline{\Gamma }}-\mathrm{\overline{X}}$$ Γ ¯ - X ¯ . Our study provides a platform to study the dynamics of CDW and its interaction with other physical orders in two- and three-dimensions. 
    more » « less
  3. Abstract We consider thed-dimensional MagnetoHydroDynamics (MHD) system defined on a sufficiently smooth bounded domain,$$d = 2,3$$ d = 2 , 3 with homogeneous boundary conditions, and subject to external sources assumed to cause instability. The initial conditions for both fluid and magnetic equations are taken of low regularity. We then seek to uniformly stabilize such MHD system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of explicitly constructed, static, feedback controls, which are localized on an arbitrarily small interior subdomain. In additional, they will be minimal in number. The resulting space of well-posedness and stabilization is a suitable product space$$\displaystyle \widetilde{\textbf{B}}^{2- ^{2}\!/_{p}}_{q,p}(\Omega )\times \widetilde{\textbf{B}}^{2- ^{2}\!/_{p}}_{q,p}(\Omega ), \, 1< p < \frac{2q}{2q-1}, \, q > d,$$ B ~ q , p 2 - 2 / p ( Ω ) × B ~ q , p 2 - 2 / p ( Ω ) , 1 < p < 2 q 2 q - 1 , q > d , of tight Besov spaces for the fluid velocity component and the magnetic field component (each “close” to$$\textbf{L}^3(\Omega )$$ L 3 ( Ω ) for$$d = 3$$ d = 3 ). Showing maximal$$L^p$$ L p -regularity up to$$T = \infty $$ T = for the feedback stabilized linear system is critical for the analysis of well-posedness and stabilization of the feedback nonlinear problem. 
    more » « less
  4. A<sc>bstract</sc> This paper presents a search for top-squark pair production in final states with a top quark, a charm quark and missing transverse momentum. The data were collected with the ATLAS detector during LHC Run 2 and correspond to an integrated luminosity of 139 fb−1of proton-proton collisions at a centre-of-mass energy of$$ \sqrt{s} $$ s = 13 TeV. The analysis is motivated by an extended Minimal Supersymmetric Standard Model featuring a non-minimal flavour violation in the second- and third-generation squark sector. The top squark in this model has two possible decay modes, either$$ {\tilde{t}}_1\to c{\overset{\sim }{\chi}}_1^0 $$ t ~ 1 c χ ~ 1 0 or$$ {\tilde{t}}_1\to t{\overset{\sim }{\chi}}_1^0 $$ t ~ 1 t χ ~ 1 0 , where the$$ {\overset{\sim }{\chi}}_1^0 $$ χ ~ 1 0 is undetected. The analysis is optimised assuming that both of the decay modes are equally probable, leading to the most likely final state of$$ tc+{E}_T^{\textrm{miss}} $$ tc + E T miss . Good agreement is found between the Standard Model expectation and the data in the search regions. Exclusion limits at 95% CL are obtained in the$$ m\left({\tilde{t}}_1\right) $$ m t ~ 1 vs.$$ m\left({\overset{\sim }{\chi}}_1^0\right) $$ m χ ~ 1 0 plane and, in addition, limits on the branching ratio of the$$ {\tilde{t}}_1\to t{\overset{\sim }{\chi}}_1^0 $$ t ~ 1 t χ ~ 1 0 decay as a function ofm($$ {\tilde{t}}_1 $$ t ~ 1 ) are also produced. Top-squark masses of up to 800 GeV are excluded for scenarios with light neutralinos, and top-squark masses up to 600 GeV are excluded in scenarios where the neutralino and the top squark are almost mass degenerate. 
    more » « less
  5. Abstract In the theory of protoplanetary disk turbulence, a widely adopted ansatz, or assumption, is that the turnover frequency of the largest turbulent eddy, ΩL, is the local Keplerian frequency ΩK. In terms of the standard dimensionless Shakura–Sunyaevαparameter that quantifies turbulent viscosity or diffusivity, this assumption leads to characteristic length and velocity scales given respectively by α H and α c , in whichHandcare the local gas scale height and sound speed. However, this assumption is not applicable in cases when turbulence is forced numerically or driven by some natural processes such as vertical shear instability. Here, we explore the more general case where ΩL≥ ΩKand show that, under these conditions, the characteristic length and velocity scales are respectively α / R H and α R c , where R Ω L / Ω K is twice the Rossby number. It follows that α = α ˜ / R , where α ˜ c is the root-mean-square average of the turbulent velocities. Properly allowing for this effect naturally explains the reduced particle scale heights produced in shearing box simulations of particles in forced turbulence, and it may help with interpreting recent edge-on disk observations; more general implications for observations are also presented. For R > 1 , the effective particle Stokes numbers are increased, which has implications for particle collision dynamics and growth, as well as for planetesimal formation. 
    more » « less