skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Potential Ozone Depletion From Satellite Demise During Atmospheric Reentry in the Era of Mega‐Constellations
Abstract Large constellations of small satellites will significantly increase the number of objects orbiting the Earth. Satellites burn up at the end of service life during reentry, generating aluminum oxides as the main byproduct. These are known catalysts for chlorine activation that depletes ozone in the stratosphere. We present the first atomic‐scale molecular dynamics simulation study to resolve the oxidation process of the satellite's aluminum structure during mesospheric reentry, and investigate the ozone depletion potential from aluminum oxides. We find that the demise of a typical 250‐kg satellite can generate around 30 kg of aluminum oxide nanoparticles, which may endure for decades in the atmosphere. Aluminum oxide compounds generated by the entire population of satellites reentering the atmosphere in 2022 are estimated at around 17 metric tons. Reentry scenarios involving mega‐constellations point to over 360 metric tons of aluminum oxide compounds per year, which can lead to significant ozone depletion.  more » « less
Award ID(s):
2118061
PAR ID:
10513906
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
11
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Biogenic hydrocarbons are emitted into the Earth's atmosphere by terrestrial vegetation as by‐products of photosynthesis. Isoprene is one such hydrocarbon and is the second most abundant volatile organic compound emitted into the atmosphere (after methane). Reaction with ozone represents an important atmospheric sink for isoprene removal, forming carbonyl oxides (Criegee intermediates) with extended conjugation. In this manuscript, we argue that the extended conjugation of these Criegee intermediates enables electronic excitation of these compounds, on timescales that are competitive with their slow unimolecular decay and bimolecular chemistry. We show that the complexation of methacrolein oxide with water enhances the absorption cross section of the otherwise dark S1state, potentially revealing a new avenue for forming lower volatility compounds via tropospherically relevant photochemistry. 
    more » « less
  2. Near-surface tropospheric ozone depletion events (ODEs) occur in the polar regions during springtime when ozone reacts with bromine radicals, driving tropospheric ozone mole ratios below 15 ppb (part-per-billion; nmol mol−1). ODEs alter atmospheric oxidative capacity by influencing halogen radical recycling mechanisms and the photochemical production of hydroxyl radicals (˙OH). Herein, we examined five years of continuous ozone measurements at two coastal Arctic sites: Utqiaġvik, Alaska and ∼260 km southeast at Oliktok Point, within the North Slope of Alaska oil fields. These data informed seasonal ozone trends, springtime ozone depletion, and the influence of oil field combustion emissions. Ozone depletion occurred frequently during spring: 35% of the time at Utqiaġvik and 40% at Oliktok Point. ODEs often occurred concurrently at both sites (40–92% of observed ODEs per year), supporting spatially widespread ozone depletion. Observed ozone depletion timescales are consistent with transport of ozone-depleted air masses, suggesting regional active bromine chemistry. Local-scale ozone depletion affecting individual sites occurred less frequently. Ozone depletion typically coincided with calm winds and had no clear dependence on temperature. Consistently lower ozone mole ratios year-round at Oliktok Point, compared to Utqiaġvik, indicate local-scale ozone titration within the stable boundary layer by nitric oxide (NO˙) combustion emissions in the Arctic oil fields. Oxidation of combustion-derived volatile organic compounds in the presence of NOx also likely contributes to ozone formation downwind, for example at Utqiaġvik, pointing to complex local and regional impacts of combustion emissions as Arctic anthropogenic activity increases. 
    more » « less
  3. Abstract The 2015 and 2020 ozone holes set record sizes in October–December. We show that these years, as well as other recent large ozone holes, still adhere to a fundamental recovery metric: the later onset of early spring ozone depletion as chlorine and bromine diminishes. This behavior is also captured in the Whole Atmosphere Chemistry Climate Model. We quantify observed recovery trends of the onset of the ozone hole and in the size of the September ozone hole, with good model agreement. A substantial reduction in ozone hole depth during September over the past decade is also seen. Our results indicate that, due to dynamical phenomena, it is likely that large ozone holes will continue to occur intermittently in October–December, but ozone recovery will still be detectable through the later onset, smaller, and less deep September ozone holes: metrics that are governed more by chemical processes. 
    more » « less
  4. Near-surface mercury and ozone depletion events occur in the lowest part of the atmosphere during Arctic spring. Mercury depletion is the first step in a process that transforms long-lived elemental mercury to more reactive forms within the Arctic that are deposited to the cryosphere, ocean, and other surfaces, which can ultimately get integrated into the Arctic food web. Depletion of both mercury and ozone occur due to the presence of reactive halogen radicals that are released from snow, ice, and aerosols. In this work, we added a detailed description of the Arctic atmospheric mercury cycle to our recently published version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem 4.3.3) that includes Arctic bromine and chlorine chemistry and activation/recycling on snow and aerosols. The major advantage of our modelling approach is the online calculation of bromine concentrations and emission/recycling that is required to simulate the hourly and daily variability of Arctic mercury depletion. We used this model to study coupling between reactive cycling of mercury, ozone, and bromine during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) spring season in 2020 and evaluated results compared to land-based, ship-based, and remote sensing observations. The model predicts that elemental mercury oxidation is driven largely by bromine chemistry and that particulate mercury is the major form of oxidized mercury. The model predicts that the majority (74%) of oxidized mercury deposited to land-based snow is re-emitted to the atmosphere as gaseous elemental mercury, while a minor fraction (4%) of oxidized mercury that is deposited to sea ice is re-emitted during spring. Our work demonstrates that hourly differences in bromine/ozone chemistry in the atmosphere must be considered to capture the springtime Arctic mercury cycle, including its integration into the cryosphere and ocean. 
    more » « less
  5. Abstract On 3 February 2022, at 18:13 UTC, SpaceX launched and a short time later deployed 49 Starlink satellites at an orbit altitude between 210 and 320 km. The satellites were meant to be further raised to 550 km. However, the deployment took place during the main phase of a moderate geomagnetic storm, and another moderate storm occurred on the next day. The resulting increase in atmospheric drag led to 38 out of the 49 satellites reentering the atmosphere in the following days. In this work, we use both observations and simulations to perform a detailed investigation of the thermospheric conditions during this storm. Observations at higher altitudes, by Swarm‐A (∼438 km, 09/21 Local Time [LT]) and the Gravity Recovery and Climate Experiment Follow‐On (∼505 km, 06/18 LT) missions show that during the main phase of the storms the neutral mass density increased by 110% and 120%, respectively. The storm‐time enhancement extended to middle and low latitudes and was stronger in the northern hemisphere. To further investigate the thermospheric variations, we used six empirical and first‐principle numerical models. We found the models captured the upper and lower thermosphere changes, however, their simulated density enhancements differ by up to 70%. Further, the models showed that at the low orbital altitudes of the Starlink satellites (i.e., 200–300 km) the global averaged storm‐time density enhancement reached up to ∼35%–60%. Although such storm effects are far from the largest, they seem to be responsible for the reentry of the 38 satellites. 
    more » « less