skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inferences about the population history of Rangifer tarandus from Y chromosome and mtDNA phylogenies
Abstract Reindeer, called caribou in North America, has a circumpolar distribution and all extant populations belong to the same species (Rangifer tarandus). It has survived the Holocene thanks to its immense adaptability and successful coexistence with humans in different forms of hunting and herding cultures. Here, we examine the paternal and maternal history ofRangiferbased on robust Y‐chromosomal and mitochondrial DNA (mtDNA) trees representing Eurasian tundra reindeer, Finnish forest reindeer, Svalbard reindeer, Alaska tundra caribou, and woodland caribou. We first assembled Y‐chromosomal contigs, representing 1.3 Mb of single‐copy Y regions. Based on 545 Y‐chromosomal and 458 mtDNA SNPs defined in 55 males, maximum parsimony trees were created. We observed two well separated clades in both phylogenies: the “EuroBeringian clade” formed by animals from Arctic Islands, Eurasia, and a few from North America and the “North American clade” formed only by caribou from North America. The time calibrated Y tree revealed an expansion and dispersal of lineages across continents after the Last Glacial Maximum. We show for the first time unique paternal lineages in Svalbard reindeer and Finnish forest reindeer and reveal a circumscribed Y haplogroup in Fennoscandian tundra reindeer. The Y chromosome in domesticated reindeer is markedly diverse indicating that several male lineages have undergone domestication and less intensive selection on males. This study placesR. tarandusonto the list of species with resolved Y and mtDNA phylogenies and builds the basis for studies of the distribution and origin of paternal and maternal lineages in the future.  more » « less
Award ID(s):
2126794
PAR ID:
10513920
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
14
Issue:
6
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Given the current rates of climate change, with associated shifts in herbivore population densities, understanding the role of different herbivores in ecosystem functioning is critical for predicting ecosystem responses. Here, we examined how migratory geese and resident, non‐migratory reindeer—two dominating yet functionally contrasting herbivores—control vegetation and ecosystem processes in rapidly warming Arctic tundra.We collected vegetation and ecosystem carbon (C) flux data at peak plant growing season in the two longest running, fully replicated herbivore removal experiments found in high‐Arctic Svalbard. Experiments had been set up independently in wet habitat utilised by barnacle geeseBranta leucopsisin summer and in moist‐to‐dry habitat utilised by wild reindeerRangifer tarandus platyrhynchusyear‐round.Excluding geese induced vegetation state transitions from heavily grazed, moss‐dominated (only 4 g m−2of live above‐ground vascular plant biomass) to ungrazed, graminoid‐dominated (60 g m−2after 4‐year exclusion) and horsetail‐dominated (150 g m−2after 15‐year exclusion) tundra. This caused large increases in vegetation C and nitrogen (N) pools, dead biomass and moss‐layer depth. Alterations in plant N concentration and CN ratio suggest overall slower plant community nutrient dynamics in the short‐term (4‐year) absence of geese. Long‐term (15‐year) goose removal quadrupled net ecosystem C sequestration (NEE) by increasing ecosystem photosynthesis more than ecosystem respiration (ER).Excluding reindeer for 21 years also produced detectable increases in live above‐ground vascular plant biomass (from 50 to 80 g m−2; without promoting vegetation state shifts), as well as in vegetation C and N pools, dead biomass, moss‐layer depth and ER. Yet, reindeer removal did not alter the chemistry of plants and soil or NEE.Synthesis. Although both herbivores were key drivers of ecosystem structure and function, the control exerted by geese in their main habitat (wet tundra) was much more pronounced than that exerted by reindeer in their main habitat (moist‐to‐dry tundra). Importantly, these herbivore effects are scale dependent, because geese are more spatially concentrated and thereby affect a smaller portion of the tundra landscape compared to reindeer. Our results highlight the substantial heterogeneity in how herbivores shape tundra vegetation and ecosystem processes, with implications for ongoing environmental change. 
    more » « less
  2. ABSTRACT Anthropogenic change is reshaping the regulation and stability of animal population dynamics across broad biogeographic gradients. For example, abiotic and biotic interactions can cause gradients in population cycle period and amplitude, but this research is mostly constrained to small mammals. Caribou and reindeer (Rangifer tarandusspp.) are threatened by human‐caused change and are known to fluctuate in population over multidecadal scales. But it is unclear how ecological mechanisms drive these cycles and whether these mechanisms are similar to those found in smaller mammals. Here, we carried out a global biogeographic study ofRangiferpopulation cycles in response to top‐down and bottom‐up mechanisms. We hypothesized that predation and food resources would interact to affect the amplitude and period of population cycles across the species' range. To test this, we used a two‐pronged approach: (1) we conducted a range‐wide statistical analysis of population data from 43Rangiferherds; and (2) we built tri‐trophic mechanistic population models of predator–Rangifer–food interactions. This approach allowed us to merge theoretical and empirical approaches to better understand the drivers of population cycling across space and time. We found statistical evidence for long‐term cyclicity in 19Rangiferpopulations, and some evidence that decreasing food productivity and winter temperatures may have caused increased period length and amplitude across spatial gradients. Our mechanistic model largely agreed with our empirical results, showing that decreased food resources and increased predation can drive more intense cycles over time. These paired empirical and theoretical results suggest that gradients inRangiferpopulation cycles match ecological mechanisms found in smaller mammals. Moreover, human‐caused shifts in climate, food resources, and predators may shiftRangiferpopulation dynamics towards more booms and busts, threatening population persistence. We recommend that dynamic management strategies, in tandem with theoretical and empirical approaches, could be used to better understand and manage population cycles across space and time. 
    more » « less
  3. Abstract Warming temperatures and advancing spring are affecting annual snow and ice cycles, as well as plant phenology, across the Arctic and boreal regions. These changes may be linked to observed population declines in wildlife, including barren‐ground caribou (Rangifer tarandus), a key species of Arctic environments. We quantified how barren‐ground caribou, characteristically both gregarious and migratory, synchronize births in time and aggregate births in space and investigated how these tactics are influenced by variable weather conditions. We analyzed movement patterns to infer calving dates for 747 collared female caribou from seven herds across northern North America, totaling 1255 calving events over a 15‐year period. By relating these events to local weather conditions during the 1‐year period preceding calving, we examined how weather influenced calving timing and the ability of caribou to reach their central calving area. We documented continental‐scale synchrony in calving, but synchrony was greatest within an individual herd for a given year. Weather conditions before and during gestation had contrasting effects on the timing and location of calving. Notably, a combination of unfavorable weather conditions during winter and spring, including the pre‐calving migration, resulted in a late arrival on the calving area or a failure to reach the greater calving area in time for calving. Though local weather conditions influenced calving timing differently among herds, warm temperatures and low wind speed, which are associated with soft, deep snow, during the spring and pre‐calving migration, generally affected the ability of female caribou to reach central calving areas in time to give birth. Delayed calving may have potential indirect consequences, including reduced calf survival. Overall, we detected considerable variability across years and across herds, but no significant trend for earlier calving by caribou, even as broad indicators of spring and snow phenology trend earlier. Our results emphasize the importance of monitoring the timing and location of calving, and to examine how weather during summer and winter are affecting calving and subsequent reproductive success. 
    more » « less
  4. Lopez, Jose (Ed.)
    Abstract Mitochondria are assumed to be maternally inherited in most animal species, and this foundational concept has fostered advances in phylogenetics, conservation, and population genetics. Like other animals, mitochondria were thought to be solely maternally inherited in the marine copepod Tigriopus californicus, which has served as a useful model for studying mitonuclear interactions, hybrid breakdown, and environmental tolerance. However, we present PCR, Sanger sequencing, and Illumina Nextera sequencing evidence that extensive paternal mitochondrial DNA (mtDNA) transmission is occurring in inter-population hybrids of T. californicus. PCR on four types of crosses between three populations (total sample size of 376 F1 individuals) with 20% genome-wide mitochondrial divergence showed 2% to 59% of F1 hybrids with both paternal and maternal mtDNA, where low and high paternal leakage values were found in different cross directions of the same population pairs. Sequencing methods further verified nucleotide similarities between F1 mtDNA and paternal mtDNA sequences. Interestingly, the paternal mtDNA in F1s from some crosses inherited haplotypes that were uncommon in the paternal population. Compared to some previous research on paternal leakage, we employed more rigorous methods to rule out contamination and false detection of paternal mtDNA due to non-functional nuclear mitochondrial DNA fragments. Our results raise the potential that other animal systems thought to only inherit maternal mitochondria may also have paternal leakage, which would then affect the interpretation of past and future population genetics or phylogenetic studies that rely on mitochondria as uniparental markers. 
    more » « less
  5. Summary Joshua trees are long‐lived perennial monocots native to the Mojave Desert in North America. Composed of two species,Yucca brevifoliaandY. jaegeriana(Asparagaceae), Joshua trees are imperiled by climate change, with decreases in suitable habitat predicted under future climate change scenarios. Relatively little is understood about the ecophysiology of Joshua trees across their range, including the extent to which populations are locally adapted or phenotypically plastic to environmental stress.Plants in our common gardens showed evidence of Crassulacean acid metabolism photosynthesis (CAM) in a pilot experiment, despite no prior report of this photosynthetic pathway in these species. We further studied the variation and strength of CAM within a single common garden, measuring seedlings representing populations across the range of the two species.A combination of physiology and transcriptomic data showed low levels of CAM that varied across populations but were unrelated to home environmental conditions. Gene expression confirmed CAM activity and further suggested differences in carbon and nitrogen metabolism betweenY. brevifoliaandY. jaegeriana.Together the results suggest greater physiological diversity between these species than initially expected, particularly at the seedling stage, with implications for future survival of Joshua trees under a warming climate. 
    more » « less