skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reduction of Drag Coefficient Due To Misaligned Wind‐Waves
Abstract Recent field observations suggest that the air‐sea momentum flux (or the drag coefficient) is significantly reduced when the dominant wind‐forced surface waves are misaligned from local wind. Such conditions may occur under rapidly changing strong winds (such as under tropical cyclones) or in coastal shallow waters where waves are refracted by bottom topography. A recent Large Eddy Simulation (LES) study also shows that the drag coefficient is reduced by a misaligned strongly forced wave train (with a small wave age of 1.37). In order to investigate more realistic field conditions, this study employs LES to examine the effect of a misaligned (up to 90°) surface wave train over a wide range of wave age up to 10.95. For all wave ages examined, the drag coefficient is reduced compared to the flat surface condition when the misalignment angle exceeds around 22.5°–45°. The drag reduction may occur even if the form drag of the wave train is positive.  more » « less
Award ID(s):
2048752
PAR ID:
10513942
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
129
Issue:
5
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atmospheric fronts embedded in extratropical cyclones are high‐impact weather phenomena, contributing significantly to mid‐latitude winter precipitation. The three vital characteristics of the atmospheric fronts, high wind speeds, abrupt change in wind direction, and rapid translation, force the induced surface waves to be misaligned with winds exclusively behind the cold fronts. The effects of the misaligned waves under atmospheric cold fronts on air‐sea fluxes remain undocumented. Using the multi‐year in situ near‐surface observations and direct covariance flux measurements from the Pioneer Array off the coast of New England, we find that the majority of the passing cold fronts generate misaligned waves behind the cold front. Once generated, the waves remain misaligned, on average, for about 8 hr. The parameterized effect of misaligned waves in a fully coupled model significantly increases the roughness length (185%), drag coefficient (19%), and air‐sea momentum flux (11%). The increased surface drag reduces the wind speeds in the surface layer. The upward turbulent heat flux is weakly decreased by the misaligned waves because of the decrease in temperature and humidity scaling parameters being greater than the increase in friction velocity. The misaligned wave effect is not accurately represented in a commonly used wave‐based bulk flux algorithm. Yet, considering this effect in the current formulation improves the overall accuracy of parameterized momentum flux estimates. The results imply that better representing a directional wind‐wave coupling in the bulk formula of the numerical models may help improve the air‐sea interaction simulations under the passing atmospheric fronts in the mid‐latitudes. 
    more » « less
  2. Abstract The drag coefficient under tropical cyclones and its dependence on sea states are investigated by combining upper-ocean current observations [using electromagnetic autonomous profiling explorer (EM-APEX) floats deployed under five tropical cyclones] and a coupled ocean–wave (Modular Ocean Model 6–WAVEWATCH III) model. The estimated drag coefficient averaged over all storms is around 2–3 × 10−3for wind speeds of 25–55 m s−1. While the drag coefficient weakly depends on wind speed in this wind speed range, it shows stronger dependence on sea states. In particular, it is significantly reduced when the misalignment angle between the dominant wave direction and the wind direction exceeds about 45°, a feature that is underestimated by current models of sea state–dependent drag coefficient. Since the misaligned swell is more common in the far front and in the left-front quadrant of the storm (in the Northern Hemisphere), the drag coefficient also tends to be lower in these areas and shows a distinct spatial distribution. Our results therefore support ongoing efforts to develop and implement sea state–dependent parameterizations of the drag coefficient in tropical cyclone conditions. 
    more » « less
  3. null (Ed.)
    Abstract Turbulence driven by wind and waves controls the transport of heat, momentum, and matter in the ocean surface boundary layer (OSBL). For realistic ocean conditions, winds and waves are often neither aligned nor constant, for example, when winds turn rapidly. Based on a Large Eddy Simulation (LES) method, which captures shear-driven turbulence (ST) and Langmuir turbulence (LT) driven by the Craik-Leibovich vortex force, we investigate the OSBL response to abruptly turning winds. We design idealized LES experiments, whose winds are initially constant to equilibrate OSBL turbulence before abruptly turning 90° either cyclonically or anticyclonically. The transient Stokes drift for LT is estimated from a spectral wave model. The OSBL response includes three successive stages that follow the change in direction. During stage 1, turbulent kinetic energy (TKE) decreases due to reduced TKE production. Stage 2 is characterized by TKE increasing with TKE shear production recovering and exceeding TKE dissipation. Transient TKE levels may exceed their stationary values due to inertial resonance and non-equilibrium turbulence. Turbulence relaxes to its equilibrium state at stage 3, but LT still adjusts due to slowly developing waves. During stages 1 and 2, greatly misaligned wind and waves lead to Eulerian TKE production exceeding Stokes TKE production. A Reynolds stress budget analysis and Reynolds-averaged Navier-Stokes equation models indicate that Stokes production furthermore drives the OSBL response. The Coriolis effects result in asymmetrical OSBL responses to wind turning directions. Our results suggest that transient wind conditions play a key role in understanding realistic OSBL dynamics. 
    more » « less
  4. In recent years, the global transition towards green energy, driven by environmental concerns and increasing electricity demands, has remarkably reshaped the energy landscape. The transformative potential of marine wind energy is particularly critical in securing a sustainable energy future. To achieve this objective, it is essential to have an accurate understanding of wind dynamics and their interactions with ocean waves for the proper design and operation of offshore wind turbines (OWTs). The accuracy of met-ocean models depends critically on their ability to correctly capture sea-surface drag over the multiscale ocean surface—a quantity typically not directly resolved in numerical models and challenging to acquire using either field or laboratory measurements. Although skin friction drag contributes considerably to the total wind stress, especially at moderate wind speeds, it is notoriously challenging to predict using physics-based approaches. The current work introduces a novel approach based on a convolutional neural network (CNN) model to predict the spatial distributions of skin friction drag over wind-generated surface waves using wave profiles, local wave slopes, local wave phases, and the scaled wind speed. The CNN model is trained using a set of high-resolution laboratory measurements of air-side velocity fields and their respective surface viscous stresses obtained over a range of wind-wave conditions. The results demonstrate the capability of our model to accurately estimate both the instantaneous and area-aggregate viscous stresses for unseen wind-wave regimes. The proposed CNN-based wall-layer model offers a viable pathway for estimating the local and averaged skin friction drag in met-ocean simulations. 
    more » « less
  5. Abstract The wind shear stress at the ocean surface drives momentum exchange across the air-sea interface regulating atmospheric and oceanic phenomena. Theoretically, the mean wind stress acts in a reference frame moving with the ocean surface; however, the relative motion between the air and ocean surface layers is conventionally neglected in bulk transfer formulae. Recent developments improving air-sea momentum flux quantification advocate for explicitly defining the air-sea relative wind, especially in the regime of low wind forcing, where surface currents may approach a significant fraction of the total wind speed. Yet, in practice, this new approach is typically applied using opportunistic definitions of the near-surface current. Here, we build on this recent work and propose a general framework for the bulk air-sea momentum flux that directly accounts for vertical current shear and surface waves in quantifying the stress at the interface. Our approach partitions the stress at the interface into viscous skin and (wave) form drag components, each applied to their relevant surface advections, which are quantified using the inertial motions within the sub-surface log layer and the modulation of waves by currents predicted by linear theory, respectively. The efficacy of this approach is demonstrated using an extensive oceanic dataset from the Coastal Endurance Array (Ocean Observatories Initiative) offshore of Newport, Oregon (2017–2023) that includes co-located measurements of direct covariance wind stress, directional wave spectra, and current profiles. As expected, our framework does not alter the overall dependence of momentum flux on mean wind forcing, and we found the largest impacts at relatively low wind speeds. Below 3 m s$$^{-1}$$, accounting for sub-surface shear reduced form drag variation by 40–50% as compared to a current-agnostic approach; as compared to a shear-free current, i.e., slab ocean, a 35% reduction in form drag variation was found. At this wind forcing, neglecting the currents led to systematically overestimating the form stress by 20 to 50%—an effect that could not be captured by using the slab ocean approach. This framework builds on the existing understanding of wind-wave-current interaction, yielding a novel formulation that explicitly accounts for the role of current shear and surface waves in air-sea momentum flux. This work holds significant implications for air-sea coupled modeling in general conditions. 
    more » « less