Abstract Exoplanet discoveries have revealed a dramatic diversity of planet sizes across a vast array of orbital architectures. Sub-Neptunes are of particular interest; due to their absence in our own solar system, we rely on demographics of exoplanets to better understand their bulk composition and formation scenarios. Here, we present the discovery and characterization of TOI-1437 b, a sub-Neptune with a 18.84 day orbit around a near-solar analog (M⋆= 1.10 ± 0.10M☉,R⋆=1.17 ± 0.12R☉). The planet was detected using photometric data from the Transiting Exoplanet Survey Satellite (TESS) mission and radial velocity (RV) follow-up observations were carried out as a part of the TESS-Keck Survey using both the HIRES instrument at Keck Observatory and the Levy Spectrograph on the Automated Planet Finder telescope. A combined analysis of these data reveal a planet radius ofRp= 2.24 ± 0.23R⊕and a mass measurement ofMp= 9.6 ± 3.9M⊕). TOI-1437 b is one of few (∼50) known transiting sub-Neptunes orbiting a solar-mass star that has a RV mass measurement. As the formation pathway of these worlds remains an unanswered question, the precise mass characterization of TOI-1437 b may provide further insight into this class of planet.
more »
« less
TOI-663: A newly discovered multi-planet system with three transiting mini-Neptunes orbiting an early M star
We present the detection of three exoplanets orbiting the early M dwarf TOI-663 (TIC 54962195;V= 13.7 mag,J= 10.4 mag,R★= 0.512 ± 0.015R⊙,M★= 0.514 ± 0.012M⊙,d= 64 pc). TOI-663 b, c, and d, with respective radii of 2.27 ± 0.10R⊕, 2.26 ± 0.10R⊕, and 1.92 ± 0.13R⊕and masses of 4.45 ± 0.65M⊕, 3.65 ± 0.97M⊕, and <5.2M⊕at 99%, are located just above the radius valley that separates rocky and volatile-rich exoplanets. The planet candidates are identified in two TESS sectors and are validated with ground-based photometric follow-up, precise radial-velocity measurements, and high-resolution imaging. We used the software package juliet to jointly model the photometric and radial-velocity datasets, with Gaussian processes applied to correct for systematics. The three planets discovered in the TOI-663 system are low-mass mini-Neptunes with radii significantly larger than those of rocky analogs, implying that volatiles, such as water, must predominate. In addition to this internal structure analysis, we also performed a dynamical analysis that confirmed the stability of the system. The three exoplanets in the TOI-663 system, similarly to other sub-Neptunes orbiting M dwarfs, have been found to have lower densities than planets of similar sizes orbiting stars of different spectral types.
more »
« less
- Award ID(s):
- 2108465
- PAR ID:
- 10514038
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- ESO
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 685
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A19
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present an analysis of 126 new radial velocity measurements from the MAROON-X spectrograph to investigate the TOI-1266 system, which hosts two known transiting sub-Neptunes at 10.8 and 18.8 days. We integrated our measurements with existing HARPS-N measurements for this system and derived revised masses for TOI-1266 b and c ofMb= 4.09 ± 0.45M⊕andMc= 2.64 ± 0.52M⊕, respectively. The Keplerian fit from the combined datasets enabled an ≈35% and ≈41% improvement in mass precision for planet b and c, respectively, compared to the previously published values. With bulk densities ofρb= 1.25 ± 0.21 g cm−3andρc= 1.51 ± 0.39 g cm−3, the planets are among the lowest density sub-Neptunes orbiting an M dwarf. They are both consistent with rocky cores surrounded by hydrogen helium envelopes. TOI-1266 c may also be consistent with a water-rich composition, but we disfavor that interpretation from an Occam's razor perspective.more » « less
-
Abstract We present the validation of two planets orbiting M dwarfs, TOI-1696b and TOI-2136b. Both planets are mini-Neptunes orbiting nearby stars, making them promising prospects for atmospheric characterization with the James Webb Space Telescope (JWST). We validated the planetary nature of both candidates using high-contrast imaging, ground-based photometry, and near-infrared radial velocities. Adaptive optics images were taken using the ShARCS camera on the 3 m Shane Telescope. Speckle images were taken using the NN-Explore Exoplanet Stellar Speckle Imager on the WIYN 3.5 m telescope. Radii and orbital ephemerides were refined using a combination of the Transiting Exoplanet Survey Satellite, the diffuser-assisted Astrophysical Research Consortium (ARC) Telescope Imaging Camera (ARCTIC) imager on the 3.5 m ARC telescope at Apache Point Observatory, and the 0.6 m telescope at Red Buttes Observatory. We obtained radial velocities using the Habitable-Zone Planet Finder on the 10 m Hobby–Eberly Telescope, which enabled us to place upper limits on the masses of both transiting planets. TOI-1696b (P= 2.5 days;Rp= 3.24R⊕;Mp< 56.6M⊕) falls into a sparsely populated region of parameter space considering its host star’s temperature (Teff= 3168 K, M4.5), as planets of its size are quite rare around mid- to late-M dwarfs. On the other hand, TOI-2136b (P= 7.85 days;Rp= 2.09R⊕;Mp< 15.0M⊕) is an excellent candidate for atmospheric follow-up with the JWST.more » « less
-
We report the discovery and characterization of two small transiting planets orbiting the bright M3.0V star TOI-1468 (LSPM J0106+1913), whose transit signals were detected in the photometric time series in three sectors of the TESS mission. We confirm the planetary nature of both of them using precise radial velocity measurements from the CARMENES and MAROON-X spectrographs, and supplement them with ground-based transit photometry. A joint analysis of all these data reveals that the shorter-period planet, TOI-1468 b ( P b = 1.88 d), has a planetary mass of M b = 3.21 ± 0.24 M ⊕ and a radius of R b = 1.280 −0.039 +0.038 R ⊕ , resulting in a density of ρ b = 8.39 −0.92 +1.05 g cm −3 , which is consistent with a mostly rocky composition. For the outer planet, TOI-1468 c ( P c = 15.53 d), we derive a mass of M c = 6.64 −0.68 +0.67 M ⊕ ,aradius of R c = 2.06 ± 0.04 R ⊕ , and a bulk density of ρ c = 2.00 −0.19 +0.21 g cm −3 , which corresponds to a rocky core composition with a H/He gas envelope. These planets are located on opposite sides of the radius valley, making our system an interesting discovery as there are only a handful of other systems with the same properties. This discovery can further help determine a more precise location of the radius valley for small planets around M dwarfs and, therefore, shed more light on planet formation and evolution scenarios.more » « less
-
Abstract Among Neptunian mass exoplanets (20−50M⊕), puffy hot Neptunes are extremely rare, and their unique combination of low mass and extended radii implies very low density (ρ< 0.3 g cm−3). Over the last decade, only a few puffy planets have been detected and precisely characterized with both transit and radial velocity observations, most notably including WASP-107b, TOI-1420b, and WASP-193b. In this paper, we report the discovery of TOI-1173 Ab, a low-density ( g cm−3) super-Neptune withP= 7.06 days in a nearly circular orbit around the primary G-dwarf star in the wide binary system TOI-1173 A/B. Using radial velocity observations with the MAROON-X and HIRES spectrographs and transit photometry from TESS, we determine a planet mass ofMp= 27.4 ± 1.7M⊕and radius ofRp= 9.19 ± 0.18R⊕. TOI-1173 Abis the first puffy super-Neptune planet detected in a wide binary system (projected separation ∼11,400 au). We explore several mechanisms to understand the puffy nature of TOI-1173 Aband show that tidal heating is the most promising explanation. Furthermore, we demonstrate that TOI-1173 Ablikely has maintained its orbital stability over time and may have undergone von-Zeipel–Lidov–Kozai migration followed by tidal circularization, given its present-day architecture, with important implications for planet migration theory and induced engulfment into the host star. Further investigation of the atmosphere of TOI-1173 Abwill shed light on the origin of close-in low-density Neptunian planets in field and binary systems, while spin–orbit analyses may elucidate the dynamical evolution of the system.more » « less
An official website of the United States government

