Silyl palladium cations (R3P)2Pd–SiR3+ catalyze the ring opening, C–C bond forming, and functionalization of 5- and 6-membered cyclic allyl ethers with O-silyl nucleophiles. Conditions for high regio-control are achieved by adjustments in the phosphine electronics, with the identity of the 2-substituent also influencing the functionalization location in unsymmetrical furans. Allyl alcohols are obtained with a regio-preference for terminal addition with unsubstituted ethers with E-products being obtained with XantPhos and Z- with (4-CF3–Ar)3 ligation. Styrenes dominate with phenyl-substituted dihydrofurans, and for 2-alkyl-substituted, secondary alcohols result from an allyl migration pathway. Mechanistic studies demonstrate the feasibility of Pd–Si+ bonds to facilitate C–O activation to yield π-allyl intermediates, and for one substrate class to also sequence π-allyl migration prior to nucleophilic addition. DFT calculations demonstrated the viability of silylium-activated ether as a competent ligand for Pd(0).
more »
« less
The Higher Propensity of Pd-SiHEt 2 + over Pd-SiMe 2 Et + to Transfer Silylium to Silyl Ether Intermediates Explains Divergent Products in Ketone Hydrosilylation Catalysis
The catalytic use of silylpalladium cations has been developed for the hydrosilylation of ketones. Product outcome was heavily influenced by hydrosilane identity with tertiary silanes providing silyl ethers and secondary silanes, alkanes. Stoichiometric studies suggest a key differentiating feature is the ability to transfer silylium from XantPhosPd-SiR3+ to silyl ether intermediates in the case of secondary silanes but not tertiary. Formation of a bimetallic Pd species during catalysis with secondary silanes points to silylpalladium cations behaving as a source of both electrophilic silylium ions and nucleophilic Pd(0).
more »
« less
- Award ID(s):
- 2154432
- PAR ID:
- 10514040
- Publisher / Repository:
- Organometallics
- Date Published:
- Journal Name:
- Organometallics
- Volume:
- 43
- Issue:
- 11
- ISSN:
- 0276-7333
- Page Range / eLocation ID:
- 1256 to 1263
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Following an ongoing interest in the study of transition metal complexes with exotic bonding networks, we report herein the synthesis of a family of heterobimetallic triangular clusters involving Ru and Pd atoms. These are the first examples of trinuclear complexes combining these nuclei. Structural and bonding analyses revealed both analogies and unexpected differences for these [Pd 2 Ru] + complexes compared to their parent [Pd 3 ] + peers. Noticeably, participation of the Ru atom in the π-aromaticity of the coordinated benzene ring makes the synthesized compound the second reported example of ‘bottled’ double aromaticity. This can also be referred to as spiroaromaticity due to the participation of Ru in two aromatic systems at a time. Moreover, the [Pd 2 Ru] + kernel exhibits unprecedented orbital overlap of Ru d z2 AO and two Pd d xy or d x2−y2 AOs. The present findings reveal the possibility of synthesizing stable clusters with delocalized metal–metal bonding from the combination of non-adjacent elements of the periodic table which has not been reported previously.more » « less
-
Abstract The silylium‐like surface species [iPr3Si][(RFO)3Al−OSi≡)] activates (N^N)Pd(CH3)Cl (N^N=Ar−N=CMeMeC=N−Ar, Ar=2,6‐bis(diphenylmethyl)‐4‐methylbenzene) by chloride ion abstraction to form [(N^N)Pd−CH3][(RFO)3Al−OSi≡)] (1). A combination of FTIR, solid‐state NMR spectroscopy, and reactions with CO or vinyl chloride establish that1shows similar reactivity patterns as (N^N)Pd(CH3)Cl activated with Na[B(ArF)4]. Multinuclear13C{27Al} RESPDOR and1H{19F} S‐REDOR experiments are consistent with a weakly coordinated ion‐pair between (N^N)Pd−CH3+and [(RFO)3Al−OSi≡)].1catalyzes the polymerization of ethylene with similar activities as [(N^N)Pd−CH3]+in solution and incorporates up to 0.4 % methyl acrylate in copolymerization reactions.1produces polymers with significantly higher molecular weight than the solution catalyst, and generates the highest molecular weight polymers currently reported in copolymerization reactions of ethylene and methylacrylate.more » « less
-
The metallo-formate anions, M(CO 2 ) − , M = Ni, Pd, and Pt, were formed by electron-induced CO 2 activation. They were generated by laser vaporization and characterized by a combination of mass spectrometry, anion photoelectron spectroscopy, and theoretical calculations. While neutral transition metal atoms are normally unable to activate CO 2 , the addition of an excess electron to these systems led to the formation of chemisorbed anionic complexes. These are covalently bound, formate-like anions, in which their CO 2 moieties are significantly reduced. In addition, we also found evidence for an unexpectedly attractive interaction between neutral Pd atoms and CO 2 .more » « less
-
Abstract Group I alkoxides are highly active precatalysts in the heterodehydrocoupling of silanes and amines to afford aminosilane products. The broadly soluble and commercially available KOtAmyl was utilized as the benchmark precatalyst for this transformation. Challenging substrates such as anilines were found to readily couple primary, secondary, and tertiary silanes in high conversions (>90 %) after only 2 h at 40 °C. Traditionally challenging silanes such as Ph3SiH were also easily coupled to simple primary and secondary amines under mild conditions, with reactivity that rivals many rare earth and transition‐metal catalysts for this transformation. Preliminary evidence suggests the formation of hypercoordinated intermediates, but radicals were detected under catalytic conditions, indicating a mechanism that is rare for Si−N bond formation.more » « less
An official website of the United States government

