Abstract CRISPR‐Cas9 has been shown to be a valuable tool in recent years, allowing researchers to precisely edit the genome using an RNA‐guided nuclease to initiate double‐strand breaks. Until recently, classical RAD51‐mediated homologous recombination has been a powerful tool for gene targeting in the mossPhyscomitrella patens. However, CRISPR‐Cas9‐mediated genome editing inP. patenswas shown to be more efficient than traditional homologous recombination (Plant Biotechnology Journal, 15, 2017, 122). CRISPR‐Cas9 provides the opportunity to efficiently edit the genome at multiple loci as well as integrate sequences at precise locations in the genome using a simple transient transformation. To fully take advantage of CRISPR‐Cas9 genome editing inP. patens, here we describe the generation and use of a flexible and modular CRISPR‐Cas9 vector system. Without the need for gene synthesis, this vector system enables editing of up to 12 loci simultaneously. Using this system, we generated multiple lines that had null alleles at four distant loci. We also found that targeting multiple sites within a single locus can produce larger deletions, but the success of this depends on individual protospacers. To take advantage of homology‐directed repair, we developed modular vectors to rapidly generate DNA donor plasmids to efficiently introduce DNA sequences encoding for fluorescent proteins at the 5′ and 3′ ends of gene coding regions. With regard to homology‐directed repair experiments, we found that if the protospacer sequence remains on the DNA donor plasmid, then Cas9 cleaves the plasmid target as well as the genomic target. This can reduce the efficiency of introducing sequences into the genome. Furthermore, to ensure the generation of a null allele near the Cas9 cleavage site, we generated a homology plasmid harboring a “stop codon cassette” with downstream near‐effortless genotyping. 
                        more » 
                        « less   
                    
                            
                            A historical sequence deletion in a commonly used Bacillus subtilis chromosome integration vector generates undetected loss-of-function mutations
                        
                    
    
            Since the 1980s, chromosome-integration vectors have been used as a core method of engineeringBacillus subtilis. One of the most frequently used vector backbones contains chromosomally derived regions that direct homologous recombination into theamyElocus. Here, we report a gap in the homology region inherited from the originalamyEintegration vector, leading to erroneous recombination in a subset of transformants and a loss-of-function mutation in the downstream gene. Internal to the homology arm that spans the 3′ portion ofamyEand the downstream geneldh, an unintentional 227 bp deletion generates two crossover events. The major event yields the intended genotype, but the minor event, occurring in ~10 % of colonies, results in a truncation ofldh, which encodes lactate dehydrogenase. Although both types of colonies test positive foramyEdisruption by starch plating, the potential defect in fermentative metabolism may be left undetected and confound the results of subsequent experiments. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1844668
- PAR ID:
- 10514129
- Publisher / Repository:
- Microbiology
- Date Published:
- Journal Name:
- Microbiology
- Volume:
- 170
- Issue:
- 4
- ISSN:
- 1350-0872
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            CRISPR‐Cas9 technology has been successfully applied inYarrowia lipolyticafor targeted genomic editing including gene disruption and integration; however, disruptions by existing methods typically result from small frameshift mutations caused by indels within the coding region, which usually resulted in unnatural protein. In this study, a dual cleavage strategy directed by paired sgRNAs is developed for gene knockout. This method allows fast and robust gene excision, demonstrated on six genes of interest. The targeted regions for excision vary in length from 0.3 kb up to 3.5 kb and contain both non‐coding and coding regions. The majority of the gene excisions are repaired by perfect nonhomologous end‐joining without indel. Based on this dual cleavage system, two targeted markerless integration methods are developed by providing repair templates. While both strategies are effective, homology mediated end joining (HMEJ) based method are twice as efficient as homology recombination (HR) based method. In both cases, dual cleavage leads to similar or improved gene integration efficiencies compared to gene excision without integration. This dual cleavage strategy will be useful for not only generating more predictable and robust gene knockout, but also for efficient targeted markerless integration, and simultaneous knockout and integration inY. lipolytica.more » « less
- 
            Kaltenpoth, Martin (Ed.)ABSTRACT Mechanistic understanding of interactions in many host-microbe systems, including the honey bee microbiome, is limited by a lack of easy-to-use genome engineering approaches. To this end, we demonstrate a one-step genome engineering approach for making gene deletions and insertions in the chromosomes of honey bee gut bacterial symbionts. Electroporation of linear or non-replicating plasmid DNA containing an antibiotic resistance cassette flanked by regions with homology to a symbiont genome reliably results in chromosomal integration. This lightweight approach does not require expressing any exogenous recombination machinery. The high concentrations of large DNAs with long homology regions needed to make the process efficient can be readily produced using modern DNA synthesis and assembly methods. We use this approach to knock out genes, including genes involved in biofilm formation, and insert fluorescent protein genes into the chromosome of the betaproteobacterial bee gut symbiontSnodgrassella alvi. We are also able to engineer the genomes of multiple strains ofS. alviand another species,Snodgrassella communis, which is found in the bumble bee gut microbiome. Finally, we use the same method to engineer the chromosome of another bee symbiont,Bartonella apis, which is an alphaproteobacterium. As expected, gene knockout inS. alviusing this approach isrecA-dependent, suggesting that this straightforward procedure can be applied to other microbes that lack convenient genome engineering methods. IMPORTANCEHoney bees are ecologically and economically important crop pollinators with bacterial gut symbionts that influence their health. Microbiome-based strategies for studying or improving bee health have utilized wild-type or plasmid-engineered bacteria. We demonstrate that a straightforward, single-step method can be used to insert cassettes and replace genes in the chromosomes of multiple bee gut bacteria. This method can be used for investigating the mechanisms of host-microbe interactions in the bee gut community and stably engineering symbionts that benefit pollinator health.more » « less
- 
            Abstract Until recently, precise genome editing has been limited to a few organisms. The ability of Cas9 to generate double stranded DNA breaks at specific genomic sites has greatly expanded molecular toolkits in many organisms and cell types. Before CRISPR‐Cas9 mediated genome editing,P. patenswas unique among plants in its ability to integrate DNA via homologous recombination. However, selection for homologous recombination events was required to obtain edited plants, limiting the types of editing that were possible. Now with CRISPR‐Cas9, molecular manipulations inP. patenshave greatly expanded. This protocol describes a method to generate a variety of different genome edits. The protocol describes a streamlined method to generate the Cas9/sgRNA expression constructs, design homology templates, transform, and quickly genotype plants. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Constructing the Cas9/sgRNA transient expression vector Alternate Protocol 1: Shortcut to generating single and pooled Cas9/sgRNA expression vectors Basic Protocol 2: Designing the oligonucleotide‐based homology‐directed repair (HDR) template Alternate Protocol 2: Designing the plasmid‐based HDR template Basic Protocol 3: Inducing genome editing by transforming CRISPR vector intoP. patensprotoplasts Basic Protocol 4: Identifying edited plants.more » « less
- 
            Abstract In July 2016, East Bank of Flower Garden Banks (FGB) National Marine Sanctuary experienced a localized mortality event (LME) of multiple invertebrate species that ultimately led to reductions in coral cover. Abiotic data taken directly after the event suggested that acute deoxygenation contributed to the mortality. Despite the large impact of this event on the coral community, there was no direct evidence that this LME was driven by acute deoxygenation, and thus we explored whether gene expression responses of corals to the LME would indicate what abiotic factors may have contributed to the LME. Gene expression of affected and unaffected corals sampled during the mortality event revealed evidence of the physiological consequences of the LME on coral hosts and their algal symbionts from two congeneric species (Orbicella franksiandOrbicella faveolata). Affected colonies of both species differentially regulated genes involved in mitochondrial regulation and oxidative stress. To further test the hypothesis that deoxygenation led to the LME, we measured coral host and algal symbiont gene expression in response to ex situ experimental deoxygenation (control = 6.9 ± 0.08 mg L−1, anoxic = 0.083 ± 0.017 mg L−1) in healthyO. faveolatacolonies from the FGB. However, this deoxygenation experiment revealed divergent gene expression patterns compared to the corals sampled during the LME and was more similar to a generalized coral environmental stress response. It is therefore likely that while the LME was connected to low oxygen, it was a series of interconnected stressors that elicited the unique gene expression responses observed here. These in situ and ex situ data highlight how field responses to stressors are unique from those in controlled laboratory conditions, and that the complexities of deoxygenation events in the field likely arise from interactions between multiple environmental factors simultaneously.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    