Abstract The Hunga‐Tonga Hunga‐Ha'apai volcano underwent a series of large‐magnitude eruptions that generated broad spectra of mechanical waves in the atmosphere. We investigate the spatial and temporal evolutions of fluctuations driven by atmospheric acoustic‐gravity waves (AGWs) and, in particular, the Lamb wave modes in high spatial resolution data sets measured over the Continental United States (CONUS), complemented with data over the Americas and the Pacific. Along with >800 barometer sites, tropospheric observations, and Total Electron Content data from >3,000 receivers, we report detections of volcano‐induced AGWs in mesopause and ionosphere‐thermosphere airglow imagery and Fabry‐Perot interferometry. We also report unique AGW signatures in the ionospheric D‐region, measured using Long‐Range Navigation pulsed low‐frequency transmitter signals. Although we observed fluctuations over a wide range of periods and speeds, we identify Lamb wave modes exhibiting 295–345 m s−1phase front velocities with correlated spatial variability of their amplitudes from the Earth's surface to the ionosphere. Results suggest that the Lamb wave modes, tracked by our ray‐tracing modeling results, were accompanied by deep fluctuation fields coupled throughout the atmosphere, and were all largely consistent in arrival times with the sequence of eruptions over 8 hr. The ray results also highlight the importance of winds in reducing wave amplitudes at CONUS midlatitudes. The ability to identify and interpret Lamb wave modes and accompanying fluctuations on the basis of arrival times and speeds, despite complexity in their spectra and modulations by the inhomogeneous atmosphere, suggests opportunities for analysis and modeling to understand their signals to constrain features of hazardous events.
more »
« less
This content will become publicly available on June 11, 2025
Atmospheric and Ionospheric Responses to Orographic Gravity Waves Prior to the December 2022 Cold Air Outbreak
Abstract Mountain waves are known sources of fluctuations in the upper atmosphere. However, their effects over the Continental United States (CONUS) are considered modest as compared to hot spots such as the Southern Andes. Here, we present an observation‐guided case study examining the dynamics of gravity waves (GWs) and their impacts on the ionosphere over the CONUS prior to the cold air outbreak in December 2022, which resulted from a significant distortion of the tropospheric polar vortex. The investigation relies on MERRA‐2 and ERA5 reanalysis data sets for the climatological contextualization, analysis of GWs based on National Aeronautics and Space Administration Aqua satellite's Atmospheric Infrared Sounder, 557.7 and 630.0 nm airglow emission observations, and the measurements of ionospheric disturbances retrieved from Global Navigation Satellite System signal‐based total electron content (TEC) and Super Dual Auroral Radar Network observations. We demonstrate that the tropospheric polar jet stream shifted toward the Rocky Mountains, generated large amplitude GWs (up to 11 K of brightness temperature), which, aided by winter‐time winds over mid‐latitudes, could propagate to mesospheric heights. The breaking of GWs plausibly led to the generation of a plethora of secondary acoustic and GWs that eventually emerged as the sources of extensive ionospheric fluctuations of ∼3–30 min periods and up to 0.7 TECu, observed across the entire CONUS for several days. This case offers a valuable demonstration of the interplay between tropospheric circulation and the ionosphere over CONUS, pointing to the need for a better understanding of wave‐driven deep‐atmosphere coupled dynamics.
more »
« less
- PAR ID:
- 10514172
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 129
- Issue:
- 6
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The mesospheric polar vortex (MPV) plays a critical role in coupling the atmosphere-ionosphere system, so its accurate simulation is imperative for robust predictions of the thermosphere and ionosphere. While the stratospheric polar vortex is widely understood and characterized, the mesospheric polar vortex is much less well-known and observed, a short-coming that must be addressed to improve predictability of the ionosphere. The winter MPV facilitates top-down coupling via the communication of high energy particle precipitation effects from the thermosphere down to the stratosphere, though the details of this mechanism are poorly understood. Coupling from the bottom-up involves gravity waves (GWs), planetary waves (PWs), and tidal interactions that are distinctly different and important during weak vs. strong vortex states, and yet remain poorly understood as well. Moreover, generation and modulation of GWs by the large wind shears at the vortex edge contribute to the generation of traveling atmospheric disturbances and traveling ionospheric disturbances. Unfortunately, representation of the MPV is generally not accurate in state-of-the-art general circulation models, even when compared to the limited observational data available. Models substantially underestimate eastward momentum at the top of the MPV, which limits the ability to predict upward effects in the thermosphere. The zonal wind bias responsible for this missing momentum in models has been attributed to deficiencies in the treatment of GWs and to an inaccurate representation of the high-latitude dynamics. In the coming decade, simulations of the MPV must be improved.more » « less
-
This study explores the meteorological source and vertical propagation of gravity waves (GWs) that drive daytime traveling ionospheric disturbances (TIDs), using the specified dynamics version of the SD-WACCM-X (Whole Atmosphere Community Climate Model with thermosphere-ionosphere eXtension) and the SAMI3 (Sami3 is Also a Model of the Ionosphere) simulations driven by SD-WACCM-X neutral wind and composition. A cold weather front moved over the northern-central USA (90–100°W, 35–45°N) during the daytime of 20 October 2020, with strong upward airflow. GWs with ~500–700 km horizontal wavelengths propagated southward and northward in the thermosphere over the north-central USA. Also, the perturbations were coherent from the surface to the thermosphere; therefore, the GWs were likely generated by vertical acceleration associated with the cold front over Minnesota and South Dakota. The convectively generated GWs had almost infinite vertical wavelength below ~100 km due to being evanescent. This implies that the GWs tunneled through their evanescent region in the middle atmosphere (where a squared vertical wavenumber is equal to or smaller than 0) and became freely propagating in the thermosphere and ionosphere. Medium-scale TIDs (MSTIDs) also propagated southward with the GWs, suggesting that the convectively generated GWs created MSTIDs.more » « less
-
Abstract In Vadas et al. (2024,https://doi.org/10.1029/2024ja032521), we modeled the atmospheric gravity waves (GWs) during 11–14 January 2016 using the HIAMCM, and found that the polar vortex jet generates medium to large‐scale, higher‐order GWs in the thermosphere. In this paper, we model the traveling ionospheric disturbances (TIDs) generated by these GWs using the HIAMCM‐SAMI3 and compare with ionospheric observations from ground‐based Global Navigation Satellite System (GNSS) receivers, Incoherent Scatter Radars (ISR) and the Super Dual Auroral Radar Network (SuperDARN). We find that medium to large‐scale TIDs are generated worldwide by the higher‐order GWs from this event. Many of the TIDs over Europe and Asia have concentric ring/arc‐like structure, and most of those over North/South America have planar wave structure and occur during the daytime. Those over North/South America propagate southward and are generated by higher‐order GWs from Europe/Asia which propagate over the Arctic. These latter TIDs can be misidentified as arising from geomagnetic forcing. We find that the higher‐order GWs that propagate to Africa and Brazil from Europe may aid in the formation of equatorial plasma bubbles (EPBs) there. We find that the simulated GWs, TIDs and EPBs agree with EISCAT, PFISR, GNSS, and SuperDARN measurements. We find that the higher‐order GWs are concentrated at N at 200 km, in agreement with GOCE and CHAMP data. Thus the polar vortex jet is important for generating TIDs in the northern winter ionosphere via multi‐step vertical coupling through GWs.more » « less
-
The second Korean Antarctic station, Jang Bogo Station (JBS), Terra Nova Bay (74°37.4′S, 164°13.7′E), is operational since March 2014. A Fabry–Perot Interferometer (FPI) and Vertical Incidence Pulsed Ionospheric Radar (VIPIR) were installed in 2014 and 2015 respectively, for simultaneous observations of neutral atmosphere and ionosphere in the polar region. Neutral winds observed by FPI show typical diurnal and semi-diurnal variations at around 250 km and 87 km respectively. VIPIR observations for the ionosphere also show typical electron density distributions in the polar region. Unlike conventional ionospheric sounder, it can measure ionospheric tilts to provide horizontal gradients of electron density over JBS in addition to general ionospheric parameters from sounding observation. In this article, we briefly report the preliminary results of the observations for the neutral atmosphere and ionosphere in the polar cap region.more » « less